AISTATS 2018, Playa Blanca, Lanzarote, Spain

Zeroth-order Optimization in High Dimensions

Yining Wang Carnegie Mellon University

Joint work with Simon Du, Sivaraman Balakrishnan and Aarti Singh

BACKGROUND

- * Optimization: $\min_{x \in \mathcal{X}} f(x)$
- * Classical setting (first-order):
 - * *f* is known (e.g., a likelihood function or an NN objective)
 - * $\nabla f(x)$ can be evaluated, or unbiasedly approximated
- Zeroth-order setting:
 - * *f* is unknown, or very complicated
 - * $\nabla f(x)$ is unknown, or very difficult to evaluate.

APPLICATIONS

- Hyper-parameter tuning
 - * f maps hyper-parameter x to system performance f(x).
- Experimental design
 - * *f* maps experimental setting to experimental results.
- Communication-efficient optimization
 - * Data defining the objective scattered throughout machines
 - * Communicating $\nabla f(x)$ is expensive, but f(x) ok.

FORMULATION

- * Convexity: the objective *f* is **convex**.
- * Noisy observation model:

$$y_t = f(x_t) + \xi_t, \quad \xi_t \stackrel{i.i.d.}{\sim} \mathcal{N}(0, \sigma^2).$$

- Evaluation measure:
 - * Simple regret:
 - * Cumulative regret:

$$f(\widehat{x}_{T+1}) - f^*$$
$$\sum_{t=1}^T f(x_t) - f^*$$

- * Classical method: *Estimating Gradient Descent* (EGD)
- * Gradient descent / Mirror descent:

 $x_{t+1} \leftarrow x_t - \eta_t \widehat{g}_t(x_t)$ $x_{t+1} \in \arg\min_{z \in \mathbb{R}^d} \{ \eta_t \langle \widehat{g}_t(x_t), z \rangle + \Delta_{\psi}(z, x_t) \}$

* Estimating gradient:

*
$$\widehat{g}_t(x_t) = \frac{d}{\delta} \cdot \mathbb{E}[f(x_t + \delta v_t)v_t]$$

* Gained popularity from (Nemirovski & Yudin'83, Flaxman et al.'05)

- * Classical method: *Estimating Gradient Descent* (EGD)

*
$$\widehat{g}_t(x_t) = \frac{\alpha}{\delta} \cdot \mathbb{E}[f(x_t + \delta v_t)v_t]$$

* Gained popularity from (Nemirovski & Yudin'83, Flaxman et al.'05)

- * Classical method: *Estimating Gradient Descent* (EGD)
- * Gradient descent / Mirror descent: $\widehat{g}_t(x_t) \approx \nabla f(x_t)$ $x_{t+1} \leftarrow x_t - \eta_t \widehat{g}_t(x_t)$ $x_{t+1} \in \arg\min_{z \in \mathbb{R}^d} \{\eta_t \langle \widehat{g}_t(x_t), z \rangle + \Delta_{\psi}(z, x_t) \}$ * Estimating gradient: $\widehat{g}_t(x_t) = \frac{d}{\delta} \cdot \mathbb{E}[f(x_t + \delta v_t)v_t]$
 - Gained popularity from (Nemirovski & Yudin'83, Flaxman et al.'05)

- * Classical method: *Estimating Gradient Descent* (EGD)
- Classical analysis
 - * Supposing $\|\nabla f\| \le H$ and $\|x^*\|_* \le B$
 - * Stochastic GD/MD: $f(\hat{x}) f^* \lesssim BH/\sqrt{T}$
 - * Estimating GD/MD: $f(\hat{x}) f^* \lesssim \sqrt{d \cdot BH} / T^{1/4}$
- * Problem: cannot exploit (sparse) structure in x^*

- * Classical method: *Estimating Gradient Descent* (EGD)
- * Classical analysis $\mathbb{E}\widehat{g}_t(x_t) = \nabla f(x_t)$

* Supposing $\|\nabla f\| \le H$ and $\|x^*\|_* \le B$ First-order

- * Stochastic GD/MD: $f(\hat{x}) f^* \lesssim BH/\sqrt{T}$
- * Estimating GD/MD: $f(\hat{x}) f^* \lesssim \sqrt{d \cdot BH} / T^{1/4}$
- * Problem: cannot exploit (sparse) structure in x^*

- * Classical method: *Estimating Gradient Descent* (EGD)
- * Classical analysis $\mathbb{E}\widehat{g}_t(x_t) = \nabla f(x_t)$

* Supposing $\|\nabla f\| \le H$ and $\|x^*\|_* \le B$ First-order

* Stochastic GD/MD: $f(\hat{x}) - f^* \lesssim BH/\sqrt{T}$

* Estimating GD/MD: $f(\hat{x}) - f^* \lesssim \sqrt{d \cdot BH} / T^{1/4}$ Zeroth-order

* Problem: cannot exploit (sparse) structure in x^*

 $\mathbb{E}\|\widehat{g}_t(x_t) - \nabla f(x_t)\|_2^2 \text{ small, but}$ $\mathbb{E}\widehat{g}_t(x_t) \neq \nabla f(x_t)$

- * Classical method: *Estimating Gradient Descent* (EGD)
- * Classical analysis $\mathbb{E}\widehat{g}_t(x_t) = \nabla f(x_t)$

* Supposing $\|\nabla f\| \le H$ and $\|x^*\|_* \le B$ First-order

* Stochastic GD/MD: $f(\hat{x}) - f^* \lesssim BH/\sqrt{T}$

* Estimating GD/MD: $f(\hat{x}) - f^* \lesssim \sqrt{d \cdot BH} / T^{1/4}$ Zeroth-order

* Problem: cannot exploit (sparse) structure in x^*

 $\mathbb{E}\|\widehat{g}_t(x_t) - \nabla f(x_t)\|_2^2 \text{ small, but}$ $\mathbb{E}\widehat{g}_t(x_t) \neq \nabla f(x_t)$

ASSUMPTIONS

* The "function sparsity" assumption:

 $f(x) \equiv f(x_S) \qquad \qquad S \subseteq [d], |S| = s \ll d$

- Strong theoretically, but slightly acceptable in practice
 - Hyper-parameter tuning: performance not sensitive to many input parameters
 - * Visual stimuli optimization: most brain activities are not related to visual reactions.

LASSO GRADIENT ESTIMATE

* Local linear approximation:

$$f(x_t + \delta v_t) \approx f(x_t) + \delta \langle \nabla f(x_t), v_t \rangle$$

- * Lasso gradient estimate:
 - * Sample v_1, \dots, v_n and observe $y_i \approx f(x_t + \delta v_i) f(x_t)$
 - * Construct a sparse linear system:

$$\widetilde{Y} = Y/\delta = V\nabla f(x_t) + \varepsilon$$

LASSO GRADIENT ESTIMATE

* Local linear approximation:

$$f(x_t + \delta v_t) \approx f(x_t) + \delta \langle \nabla f(x_t), v_t \rangle$$

- * Lasso gradient estimate:
 - * Construct a sparse linear system:

$$\widetilde{Y} = Y/\delta = V\nabla f(x_t) + \varepsilon$$

* Because $\nabla f(x_t)$ is **sparse**, one can use the **Lasso**

$$\widehat{g}_t(x_t) \in \arg\min_{g \in \mathbb{R}^d} \left\{ \|\widetilde{Y} - Vg\|_2^2 + \lambda \|g\|_1 \right\}$$

LASSO GRADIENT ESTIMATE

* Local linear approximation:

$$f(x_t + \delta v_t) \approx f(x_t) + \delta \langle \nabla f(x_t), v_t \rangle$$

- * Lasso gradient estimate:
 - * Construct a sparse linear system:

$$\widetilde{Y} = Y/\delta = V\nabla f(x_t) + \varepsilon$$

certain "de-biasing" required ... see paper

* Because $\nabla f(x_t)$ is **sparse**, one can use the **Lasso**

$$\widehat{g}_t(x_t) \in \arg\min_{g \in \mathbb{R}^d} \left\{ \|\widetilde{Y} - Vg\|_2^2 + \lambda \|g\|_1 \right\}$$

MAIN RESULTS

Theorem. Suppose $f(x) \equiv f(x_S)$ for some $|S| = s \ll d$, and other smoothness conditions on f hold. Then $\frac{1}{T} \sum_{t=1}^{T} f(x_t) - f^* \lesssim \operatorname{poly}(s, \log d) \cdot T^{-1/4}$ Furthermore, for smoother f the $T^{-1/4}$ can be improved to $T^{-1/3}$

MAIN RESULTS

Theorem. Suppose $f(x) \equiv f(x_S)$ for some $|S| = s \ll d$, and other smoothness conditions on f hold. Then $\frac{1}{T} \sum_{t=1}^{T} f(x_t) - f^* \lesssim \operatorname{poly}(s, \log d) \cdot T^{-1/4}$ Furthermore, for smoother f the $T^{-1/4}$ can be improved to $T^{-1/3}$

Can handle "high-dimensional" setting $d \gg T$

SIMULATION RESULTS

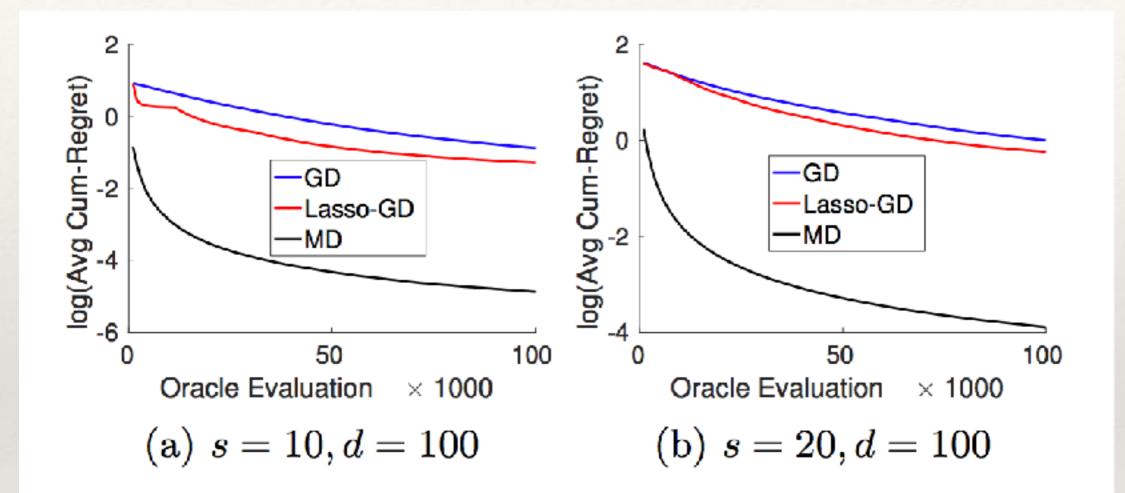


Figure 1: Sparse quadratic optimization with identity quadratic term.

SIMULATION RESULTS

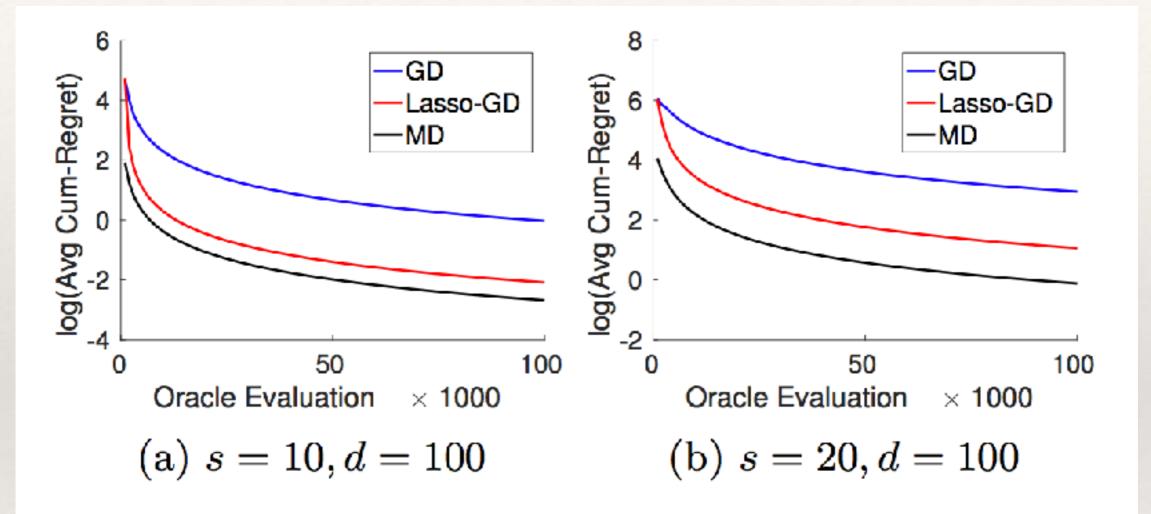


Figure 3: Sparse fourth-degree polynomial optimization with identity quadratic term.

OPEN QUESTIONS

- * Is function/gradient sparsity absolutely necessary?
 - * Recall in **first-order** case, only **solution** *x** sparsity required
 - * More specifically, only need $||x^*||_1 \le B, ||\nabla f||_{\infty} \le H$
 - * **Conjecture**: if *f* only satisfies the above condition, then $\inf_{\widehat{x}_T} \sup_{f} \mathbb{E} \left[f(\widehat{x}_T) - f^* \right] \gtrsim \operatorname{poly}(d, 1/T)$

OPEN QUESTIONS

- * Is $T^{-1/2}$ convergence achievable in high dimensions?
 - * Challenge 1: MD is awkward in exploiting strong convexity: $f(x') \ge f(x) + \langle \nabla f(x), x' - x \rangle + \frac{\nu^2}{2} \Delta_{\psi}(x', x)$
 - Challenge 2: the Lasso gradient estimate is less efficient can we design convex body K such that

$$\widehat{g}_t(x_t) = \frac{\rho(K)}{\delta} \int_{\partial K} f(x_t + \delta v) \mathbf{n}(v) d\mu(v)$$

is a good gradient estimator in high dimensions?

OPEN QUESTIONS

Wish to replace with $\|x' - x\|_1^2$

- * Is $T^{-1/2}$ convergence achievable in high dimensions?
 - * Challenge 1: MD is awkward in exploiting strong convexity. $f(x') \ge f(x) + \langle \nabla f(x), x' - x \rangle + \frac{\nu^2}{2} \Delta_{\psi}(x', x)$
 - Challenge 2: the Lasso gradient estimate is less efficient can we design convex body K such that

$$\widehat{g}_t(x_t) = \frac{\rho(K)}{\delta} \int_{\partial K} f(x_t + \delta v) \mathbf{n}(v) d\mu(v)$$

is a good gradient estimator in high dimensions?

Thank you! Questions