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BACKGROUND

❖ Optimization: 

❖ Classical setting (first-order):
✴ f is known (e.g., a likelihood function or an NN objective)

✴              can be evaluated, or unbiasedly approximated

❖ Zeroth-order setting:
✴ f is unknown, or very complicated

✴             is unknown, or very difficult to evaluate.

min
x2X

f(x)

rf(x)

rf(x)



APPLICATIONS

❖ Hyper-parameter tuning
✴ f maps hyper-parameter x to system performance f(x).

❖ Experimental design
✴ f maps experimental setting to experimental results.

❖ Communication-efficient optimization
✴ Data defining the objective scattered throughout machines

✴ Communicating             is expensive, but f(x) ok.rf(x)



FORMULATION

❖ Convexity: the objective f is convex.

❖ Noisy observation model: 

❖ Evaluation measure:
✴ Simple regret:

✴ Cumulative regret:

yt = f(xt) + ⇠t, ⇠t
i.i.d.⇠ N (0,�2).

f(bxT+1)� f

⇤

TX

t=1

f(xt)� f

⇤



METHODS

❖ Classical method: Estimating Gradient Descent (EGD)

❖ Gradient descent / Mirror descent:

❖ Estimating gradient:
✴  

✴ Gained popularity from (Nemirovski & Yudin’83, Flaxman 
et al.’05)

xt+1  xt � ⌘tbgt(xt)

bgt(xt) =
d

�

· E[f(xt + �vt)vt]
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METHODS

❖ Classical method: Estimating Gradient Descent (EGD)

❖ Classical analysis
✴ Supposing                         and

✴ Stochastic GD/MD: 

✴ Estimating GD/MD:

❖ Problem: cannot exploit (sparse) structure in x*
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ASSUMPTIONS

❖ The “function sparsity” assumption:

❖ Strong theoretically, but slightly acceptable in practice
✴ Hyper-parameter tuning: performance not sensitive to many 

input parameters

✴ Visual stimuli optimization: most brain activities are not 
related to visual reactions.

f(x) ⌘ f(xS) S ✓ [d], |S| = s ⌧ d



LASSO GRADIENT ESTIMATE

❖ Local linear approximation:

❖ Lasso gradient estimate:
✴ Sample                      and observe

✴ Construct a sparse linear system:

f(xt + �vt) ⇡ f(xt) + �hrf(xt), vti

v1, · · · , vn yi ⇡ f(xt + �vi)� f(xt)

e
Y = Y/� = Vrf(xt) + "
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certain “de-biasing”  
required  … see paper



MAIN RESULTS

Theorem. Suppose                            for some                         , and
other smoothness conditions on f hold. Then

Furthermore, for smoother f the            can be improved to
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Can handle “high-dimensional” setting d � T
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OPEN QUESTIONS

❖ Is function/gradient sparsity absolutely necessary?
✴ Recall in first-order case, only solution x* sparsity required

✴ More specifically, only need

✴ Conjecture:  if f only satisfies the above condition, then

kx⇤k1  B, krfk1  H

inf

bxT

sup

f

E [f(bx
T

)� f

⇤
] & poly(d, 1/T )



OPEN QUESTIONS

❖ Is            convergence achievable in high dimensions?
✴ Challenge 1: MD is awkward in exploiting strong convexity:

✴ Challenge 2: the Lasso gradient estimate is less efficient — 
can we design convex body K such that

T�1/2

f(x0) � f(x) + hrf(x), x0 � xi+ ⌫

2
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f(xt + �v)n(v)dµ(v)

is a good gradient estimator in high dimensions?
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Wish to replace with 
kx0 � xk21



Thank you!
Questions


