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ABSTRACT
In this paper we consider the problem of allocation of mea-
surement bits in order to reduce the statistical signal recovery
error resulting from quantization error. We propose a contin-
uous optimization problem that serves as a relaxation of the
original combinatorial problem, which is amenable to classi-
cal continuous optimization solvers such as the gradient de-
scent. We also design a “rounding” algorithm based on the
idea of effective resistance sampling to turn the continuous
fractional solution into a feasible bit allocation strategy with
integer number of bits allocated to each design point.

Index Terms— Quantization, linear models, spectral
sparsification, effective-resistance sampling

1. INTRODUCTION

Consider the noiseless linear signal model

y = Xβ0 (1)

where X ∈ Rn×p is an exactly known design matrix, typi-
cally generated from certain physical procedures, and β0 ∈
Rp is an unknown p-dimensional signal to be recovered. We
restrict ourselves to the “low-dimensional” setting p < n. Un-
like the classical linear regression model ubiquitous in the
statistics literature, the model in Eq. (1) is assumed to be
noiseless as no noise variables are included in the measure-
ment model y = Xβ0. Such a model arises in various scenar-
ios where the signal can be expressed or well-approximated
by a small number of basis elements. We mention one spe-
cific example from the framework of signal processing on
graphs [1, 2], which studies signals with an underlying com-
plex structure that is modeled by a graph such as measure-
ments at nodes of a network. The band-limited model for
graph signals is a linear model in which the network node
measurements y are well represented by a linear model where
the features are the eigenvectors of the graph Laplacian or
adjacency matrix corresponding to the smallest/largest eigen-
values, respectively.

The measurements of y, however, can only be made up to
a total of k binary bits and hence cannot be perfectly accurate.
Such measurement-constrained settings are ubiquitous in sta-
tistical signal processing and machine learning applications,
such as brain signal sensing [3], Internet of Things [4] and

electric power grids [5]. It is therefore important to design
intelligent bit allocation algorithms such that the recovery of
signal β0 is the most accurate possible subject to given bit
measurement constraints.

We formulate the bit allocation problem that will be stud-
ied in this paper as follows:

Problem 1 (passive bit allocation). Given exactly measured
design X ∈ Rn×p and a bit budget k ∈ N, k ≥ n, find a bit
allocation k = (k1, · · · , kn) ∈ Nn, k1 + · · · + kn ≤ k such
that the mean square error between the recovered signal β̂k
and the true signal β0 is mimimized.

To attack Problem 1, we first derive a continuous relax-
ation to the originally combinatorial optimization problem
that is difficult to solve. Though the relaxed optimization
problem has a non-convex objective and hence global op-
timization might be challenging, local convergence of first-
order methods such as gradient descent can be expected in
practice. We then borrow the idea of effective resistance sam-
pling from the graph sparsification literature [6] to “round”
the solution of the continuous relaxation problem.

1.1. Related work

In statistics, the question of selecting a subset of important de-
sign points so as to maximize statistical efficiency in a regres-
sion model is referred to as experimental/optimal design and
has a long history of research [7]. Indeed, our strategy was
based on existing work on computationally tractable experi-
mental design, which involves intellectually rounding (sparsi-
fying) a solution of certain continuously relaxed optimization
problems [8, 9, 10]. One important difference, as we also re-
mark in the final section of this paper, is the non-linearity of
the budget constraint, which makes the continuously relaxed
optimization problem non-convex and the subsequent effec-
tive resistance sampling algorithm difficult to analyze.

Our rounding strategy is based on the seminal work of
[6] which developed the effective resistance sampling algo-
rithm for the graph sparsification problem. Similar sampling
strategies were also considered, under the alternative name of
leverage score sampling, for linear regression [11, 12, 13] and
matrix column/row selection problems [14].

[15] also considered the problem of intelligent quantiza-
tion for learning problems. However, the setting in [15] is the



design matrix X being imperfectly measured, which differs
from our setting where X is exactly known and the response
y can only be measured with non-negligible quantization er-
ror.

The bit allocation problem has also been well-studied
in the signal processing society as resource management
research, e.g., in [16].

2. METHOD AND ANALYSIS

We present the main bit allocation algorithm and its associ-
ated analysis. In Sec. 2.1, we show how the mean square er-
ror of the recovered signal β̂k behaves when the bit allocation
strategy k = (k1, · · · , kn) is given. We then derive a continu-
ous relaxation of Problem 1 in Sec. 2.2, whose solution is then
rounded by an effective resistance algorithm in Sec. 2.3. Fi-
nally, we give a theorem establishing that when the bit budget
k is not too small, the rounded solution is within a (1 + ε)-
relative approximation error compared to the solution of the
continuous relaxed problem.

2.1. Weighted OLS and its mean square error

Suppose a bit allocation strategy k = (k1, · · · , kn) ∈ Nn+ is
given, such that

∑n
i=1 ki ≤ n. Let round(·) be the rounding

operator towards the closest integer andU [a, b] be the uniform
distribution on interval [a, b]. The observed quantized value
of yi = x>i β0 with ki ∈ N+ binary bits of measurement can
then be expressed as

ỹi = 2−(ki−1) · round
[
2ki−1

( yi
M

+ δi

)]
(2)

where M := max1≤i≤n |x>i β0| is a known bounded constant
and δ ∼ U [−2−kiM, 2−kiM ] is a dithering variable that in-
troduces additional stochasticity to the deterministic model
(1). The dithering step de-couples the statistical dependency
in the quantized error and is an important concept in the signal
processing literature [17]. Note also that the most significant
bit in ỹi indicates the sign of yi, and hence only (ki − 1) bits
are available to measure the absolute value of yi.

As the number of measure bits differ for different design
points xi, the rounding (quantization) error of each ỹi also
differs, making the quantized linear model (2) similar to a lin-
ear regression model with heteroscedastic noise. Because the
noise levels are known (controlled by the bit allocation strat-
egy k directly), a weighted Ordinary Least Squares (OLS) es-
timator is reasonable for the recovery of β0 which we define
as follows:

β̂k ∈ argminβ∈Rp

∑
i:ki>0

4ki+1(ỹi − x>i β)2. (3)

The following Proposition upper bounds the mean square
error of β̂k. Its proof is a standard analysis of weighted OLS
estimators for heteroscedastic linear models.

Proposition 1. The weighted OLS estimator β̂k satisfies

E‖β̂k − β0‖22 ≤M2 · tr

( ∑
i:ki>0

4ki+1xix
>
i

)−1 . (4)

Proof. Without loss of generality assume ki > 0 for all i, be-
cause for those design points with ki = 0 no information is
gained and therefore these points can be excluded from the
analysis. Let wi = 4ki+1 be the weight of design point xi
and define W := diag(w1, · · · , wn). The weighted OLS es-
timator β̂k then admits a closed-form expression

β̂k = (X>WX)−1X>Wỹ, (5)

where ỹ = (ỹ1, · · · , ỹn) ∈ Rn. Define ε := ỹ − y. Us-
ing the linear model that y = Xβ0, we have β̂k − β0 =
(X>WX)−1X>Wε. On the other hand, by the quantized
error model Eq. (2), it holds that E[εi|X] = 0 and E[ε2i |X] ≤
4−(ki+1)M2 = w−1i M2. Subsequently,

E‖β̂k − β0‖22
= tr

[
(X>WX)−1X>WE(εε>)W>X(X>WX)−1

]
≤M2 · tr

[
(X>WX)−1X>WX(X>WX)−1

]
= M2 · tr

[
(X>WX)−1

]
.

For simplicity we defineF (k;X) := tr[
∑n
i=1 4ki+1xix

>
i ]−1.

The bit allocation problem (Problem 1) is then reduced
to the combinatorial optimization problem of finding k =
(k1, · · · , kn) ∈ Nn+,

∑n
i=1 ki ≤ k such that F (k;X) is

minimized.

2.2. The continuous relaxation

We introduce a continuous relaxation of the combinatorial op-
timization problem mentioned in the previous section, which
is relatively easier to optimize using conventional continuous
optimization methods such as the gradient descent.

min
π=(π1,··· ,πn)∈Rn

tr

( n∑
i=1

(4πi − 1)xix
>
i

)−1 (6)

s.t. πi ≥ 0, ‖π‖1 ≤ k0.

Let π∗ denote the optimal solution to Eq. (6) and define
F (π;X) := tr[

∑n
i=1 4πi+1xix

>
i ]−1. It is straightforward

that Eq. (6) is a strict relaxation of the original combinato-
rial optimization problem, because any integral bit allocation
strategy k is automatically feasible to Eq. (6). Formally, we
have the following proposition:



input : X ∈ Rn×p, quantization budget k, support size s < k − p, number of repetitions B.
output: k̂ ∈ Nn satisfying k1 + · · ·+ kn ≤ k.
1. Continuous optimization: solve for π∗, the optimal solution of Eq. (6).
2. Pre-conditioning: Σ∗ =

∑n
i=1 4π

∗
i +1xix

>
i ; leverage scores `i = x>i Σ−1∗ xi.

3. for b ∈ {1, · · · , B} do
3.1. Initialization: {w(b)

i }ni=1 = 0.
3.2. Repeat for s times: sample it ∈ [n] from the categorical distribution Pr[it = i] = pi ∝ 4π

∗
i +1`i and update

w
(b)
it
← w

(b)
it

+ 4π
∗
i +1/pit .

3.3. Define allocation k̂
(b)

: k̂(b)i =

⌈
(k−s) log(1+w(b)

i )∑
j:w

(b)
j

>0
log(1+w

(b)
j )

⌉
and k̂(b)i = 0 if w(b)

i = 0.

end

4. Output k̂ in {k̂
(b)
}Bb=1 with the smallest objective F (k̂;X).

Algorithm 1: Bit allocation algorithm by leverage score sampling

Proposition 2. F (π∗;X) ≤ mink∈Nn,
∑n

i=1 ki≤k F (k;X).

The continuous formulation in Eq. (6) is non-convex
and is therefore challenging to achieve global optimality ef-
ficiently. Nevertheless, in practice alternative approximate
optimization methods can be applied. One possibility is to
perform (projected) gradient descent on Eq. (6) with multi-
ple initializations. Additionally, one may introduce auxiliary
variables yi = 4π − 1 and re-formulate Eq. (6) as a DC-
programming problem. Existing packages on DC program-
ming [18] can then be invoked to approximately optimize
Eq. (6).

2.3. Rounding by effective resistance sampling

The solution π∗ to the continuous optimization problem in
Eq. (6) is fractional and thus cannot be directly used as a bit
allocation strategy. In this section, we present a rounding al-
gorithm based on the celebrated effective resistance sampling
method [6].

Algorithm 1 gives a pseudo-code description of our pro-
posed rounding algorithm. At a higher level, the algorithm
“samples” each data point xi with replacement with a proba-
bility that is proportional to both the weight in the continuous
optimization problem π∗i and the leverage score (also known
as effective resistance in a graph sparsification setting [6]) of
xi with respect to Σ∗ :=

∑n
i=1 4π

∗
i +1xix

>
i .

The following proposition shows that the output strategy
k̂ is always feasible.

Proposition 3. With probability 1 it holds that k̂ ∈ Nn+ and∑n
i=1 k̂i ≤ k.

Proof. k̂ ∈ Nn clearly holds. On the other hand, because k̂

has at most s elements that are not zero, we have

n∑
i=1

k̂i ≤
∑
k̂i>0

1 +
(k − s) log(1 + w

(b)
i )∑

j:w
(b)
j >0

log(1 + w
(b)
j )

≤ s+ k − s = k.

The effective resistance sampling method is known to en-
joy superior theoretical guarantees in terms of approximation
of the continuous solutions spectrally [6]. Due to space con-
straints, we omit the formal proof of rounding performance of
Algorithm 1. The readers are referred to Secs. 3.2 and 3.3 of
[9] which analyzed the effective sampling method for a sim-
ilar experiment selection (with replacement) problem, whose
proofs can be easily adapted to show (1 + ε) approximation
guarantee of Algorithm 1.

3. CONCLUDING REMARKS

There are many open questions along this direction of re-
search. Below we mention three problems that we think are
the most interesting.

1. The continuous relaxed optimization problem in Eq. (6)
has a non-convex objective; therefore, it is challeng-
ing to obtain a global optimal solution using computa-
tionally tractable algorithms. It is an interesting ques-
tion whether approximate optimality can be achieved,
or whether convergence to local optima can be guar-
anteed for first-order methods such as the gradient de-
scent;

2. Unlike the experimental design problem for linear
regression [9, 10], the budget constraint for the bit al-
location problem is not linear in the weights of the re-
scaled design points. Thus, the (expected) total weight



∑n
i=1 w

(b)
i in Algorithm 1 does not have an easy up-

per bound, making it very challenging to bound the
performance gap between the continuous solution π∗

and its rounded version k̂. Currently we do not know
an easy fix to this problem, and potentially round-
ing/sparsification algorithms other than the effective
resistance sampling should be considered;

3. The problem we considered in this paper (Problem 1)
is passive, in the sense that the bit allocation strategy k
is determined only based on knowledge of X . In prac-
tice, however, it is usually feasible to measure the sig-
nal in a feedback-driven manner, where previous (par-
tial) measurements of ỹ might provide guidance in the
allocation of bits for later measurements. We refer this
problem as the active bit allocation problem, and con-
jecture that improvements can be made by taking pre-
vious measurements of ỹ into consideration.
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