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Abstract
In this paper, we consider the problem of online learning of Markov decision processes (MDPs) with very
large state spaces. Under the assumptions of realizable function approximation and low Bellman ranks, we
develop an online learning algorithm that learns the optimal value function while at the same time achieving
very low cumulative regret during the learning process. Our learning algorithm, Adaptive Value-function
Elimination (AVE), is inspired by the policy elimination algorithm proposed in Jiang et al. (2017), known
as OLIVE. One of our key technical contributions in AVE is to formulate the elimination steps in OLIVE as
contextual bandit problems. This technique enables us to apply the active elimination and expert weighting
methods from Dudik et al. (2011), instead of the random action exploration scheme used in the original
OLIVE algorithm, for more efficient exploration and better control of the regret incurred in each policy
elimination step. To the best of our knowledge, this is the first

√
n-regret result for reinforcement learning

in stochastic MDPs with general value function approximation.

1. Introduction

Consider a Markov Decision Process (MDP) M = (X ,A, H, p, r) with state space X , action space A,
horizon H , transition probabilities p : X × A → ∆(X )1 and reward function r : X × A → R. For
notational simplicity, we assume that X can be partitioned into disjoint subsets as X = X1 ∪ · · · XH , such
that Xh ∩Xh′ = ∅ if h 6= h′. A policy π : X → ∆(A) is a function that maps a state x ∈ X to a distribution
over actions a ∈ A. The objective of policy learning is usually formulated as an optimization of finding π
that achieves as large the expected reward as possible underM, which is defined as

R(π) := E
[∑H

h=1 rh|rh ∼ r(xh, ah), ah ∼ π(xh), xh ∼ p(xh−1, ah−1)
]
. (1)

The optimal policy π that maximizes Eq. (1) is denoted as π∗. Without further confusion, for deterministic
policies (i.e., policies whose π(·) is a singleton for all states) we abuse the notation π(x) ∈ A for the action
the policy takes at state x. We remark that the optimal policy π∗ can always be made deterministic.
∗ Extended abstract. Full version appears as https://arxiv.org/abs/1909.02506. Author names are listed in alpha-
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1. ∆(X ) denotes all probability distributions over X .
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In this paper, we consider the problem of learning near-optimal policy π with unknown p and r from two
perspectives: the sample complexity perspective, which seeks for the smallest number of realized trajectories
(possibly obtained using different exploration policies) in order to obtain a good policy with high probability,
and the online learning perspective which characterizes how the exploration policies themselves evolve and
improve over time.

1.1. Function approximation

When the state space X is finite with small cardinality |X |, all states x can be enumerated in learning.
This is known as the tabular MDP setting, which has been extensively studied (Jin et al., 2018; Zanette
and Brunskill, 2019; Azar et al., 2017; Strehl et al., 2006; Azar et al., 2011; Even-Dar and Mansour, 2003;
Sidford et al., 2018). In many real-world problems, however, |X | can be very large or even infinite. For
example, in the Go game, the total number of states could be as large as 2× 10170, clearly infeasible for any
approach that attempts to enumerate them.

It is clear that, in order to handle MDPs with very large state spaces, aggressive compression of the state
space is required for practical purposes. In the literature, such compression is most naturally accomplished
by the idea of function approximation, which considers a finite class2 of functions F = {f : X ×A → R}
and restricts ourselves to policies Π = {πf : f ∈ F} “induced” by certain function approximates, defined
as

πf (x) = arg max
a∈A

f(x, a). (2)

In essence, the complexity of the function classF captures all inherent structures in the MDPMwith a very
large state space. In practice, the approximation function classes range from linear or low-degree polyno-
mials in revenue management problems (Talluri and Van Ryzin, 1998; Adelman, 2007) to very complicated
convolutional or recurrent neural networks for complex games (Mnih et al., 2015, 2016).

To ensure a considered function approximation is appropriate, we impose the following realizability
assumption which guarantees the correspondence between the optimal policy π∗ and a function f∗ ∈ F :

Assumption 1 (Realizability) For the optimal policy π∗, there exists f∗ ∈ F such that for all h ∈ [H],
xh ∈ Xh and ah ∈ A,

Qπ
∗
h (xh, ah) := E

[∑
h′≥h rh′

∣∣rh′ = r(xh′ , ah′), ah′ = π∗(xh′), sh′ ∼ p(xh′−1, ah′−1)
]

= f∗(xh, ah).

We remark that Assumption 1 is a monotonic assumption, meaning that if it holds for function class F
then it also holds for all F ′ ⊇ F . While such monotonicity property is desirable, allowing us to use slightly
more than necessary function approximators, such property does not hold for many “completeness” type
conditions in the literature, as we remark in more details in the full version of the paper.

1.2. From PAC-learning to online learning

Suppose the learning algorithm has access to n sequentially collected trajectories, and an adaptive policy
π(i) can be used to generate the ith trajectory, which might depend on the algorithm’s observations from
the previous (i − 1) realized trajectories. Under the “Probably Approximately Correct (PAC)” framework,
after observing data from n trajectories with n depending polynomially on the problem size, the algorithm
is asked to output a policy π̂ which is near-optimal with high probability. The work in Jiang et al. (2017)
provided the first PAC-learning result under the assumption of realizability and low bellman rank:

2. The requirement that F is finite could be removed, as shown in the full version of the paper.
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Theorem 2 (Jiang et al. (2017)) For a Markov Decision Process with bellman rank M , there exists an
algorithm and a model-dependent constant CM that is a polynomial of H, |A|,M and log |F| such that, for
any ε ∈ (0, 1/2], with n = Õ(CM/ε

2) sample trajectories, the algorithm outputs a policy π̂ that satisfies
R(π̂) ≥ R(π∗)− ε with probability at least 0.9.

While PAC-learning results such as the one in Theorem 2 is very much desirable, the framework over-
looks the aspect of exploration policy improvement, which expects the quality of the exploration policy to
continuously improve as more data are collected. Such exploration policy improvement is important in ap-
plications where bad policies maybe lead to significant loss or even the cost of human lives, such as learning
for self-driving cars. In these applications, an evaluation criterion of the “cumulative” gap of sub-optimality
between the committed exploration policies and the optimal policy, known commonly as the cumulative
regret in the online/bandit learning literature, is more suitable to measure the quality of policy improvement.

The following theorem is the main result we established in this paper:

Theorem 3 (Our results, informal) For a Markov Decision Process with bellman rank M , there exists an
algorithm and a model-dependent constant C ′M that is a polynomial of H, |A|,M , log |F| and log(1/δ),
such that, for sufficiently large n, the policies π̂(1), · · · , π̂(n) the algorithm performs on the n trajectories
satisfy with probability (1− δ) that

n∑
i=1

R(π∗)−R(π̂(i)) = Õ(C ′M ×
√
n).

At a higher level, the result of Theorem 3 upper bounds the sub-optimalty gap of exploration policies
{π̂(i)} for every trajectory i = 1, 2, · · · , n the algorithm obtains. Because the upper bound is on the order
of Õ(

√
n), the exploration policies have to constantly improve over themselves as otherwise a linear O(n)

regret will be incurred.
We make some additional remarks on Theorem 3, regarding its connection with the PAC-learning result

in Theorem 2.

Remark 4 (online-to-batch conversion) Because the expected reward function R(π) is linear in policy π,
by considering the “averaging policy” π = 1

n

∑n
i=1 π̂

(i) one has R(π) = 1
n

∑n
i=1[R(π∗) − R(π̂(i))] ≥

R(π∗)− Õ(C ′M/
√
n) with high probability, matching the result in Theorem 2.

Remark 5 (exploration and exploitation) By running the PAC-learning algorithm implied by Theorem 2
on the first n1/3 sample trajectories and then switching to the learnt policy π for the rest of the n − n1/3
trajectories, one obtain a regret upper bound of Õ(Cm × n2/3), much worse than the Õ(

√
n) upper bound

in Theorem 3. The Õ(n2/3) regret bound cannot be improved by simply treating the PAC-learning algorithm
as a black box.
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