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Abstract

The experimental design problem concerns the selection of k points from a poten-
tially large design pool of p-dimensional vectors, so as to maximize the statistical
efficiency regressed on the selected k design points. Statistical efficiency is mea-
sured by optimality criteria, including A(verage), D(eterminant), T(race), E(igen),
V(ariance) and G-optimality.
We propose a poly-time regret minimization framework to achieve a (1 + ε)
approximation with O(p/ε2) design points, for all the optimality criteria above.
In contrast, to the best of our knowledge, before our work, no polynomial-time
algorithm achieves (1 + ε) approximations for D/E/G-optimality, and the best
poly-time algorithm achieving (1 + ε)-approximation for A/V-optimality requires
k = Ω(p2/ε) design points.

1 Introduction
Let x1, . . . , xn ∈ Rp be p-dimensional vectors and f : S+p → R+ be a non-negative function
defined over S+p , the class of all p-dimensional positive definite matrices. We focus on the design of
polynomial-time algorithms for approximately solving the following discrete optimization problem:

min
s∈Sk

F (s) = min
s∈Sk

f

(
n∑

i=1

si · xix
>
i

)
where Sk :=

{
s ∈ {0, 1}n,

n∑
i=1

si ≤ k
}

. (1.1)

In other words, we wish to select a subset S ⊂ [n] of cardinality at most k, so that its covariance
matrix ΣS =

∑
i∈S xix

>
i has the smallest function value f(ΣS). The main challenge of solving

Problem (1.1) is the discrete constraint s ∈ {0, 1}n.

Classical experimental design The (classical) experimental design problem concerns the selection
of k points from a potentially very large design pool {x1, . . . , xn} so as to maximize the statistical
efficiency regressed on the selected k design points.
For example, consider a clinical study application where n is the number of patients; p is the number
of parameters (e.g., blood pressure, low-density lipoprotein, etc.) that are hypothesized to affect some
disease; and x1, . . . , xn ∈ Rp are the parameters for all the patients. Since determining whether or
not a patient has a certain disease may be expensive or time-consuming, one wishes to select k � n
patients that are the most statistically efficient for establishing a regression model that connects
experimental parameters to the disease.

∗Full version available at http://arxiv.org/abs/1711.05174.

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

http://arxiv.org/abs/1711.05174


This experimental design problem reduces to Problem (1.1), where the evaluation of statistical
efficiency is reflected in the choice of the objective function f , known as the optimality criterion [1].
Popular choices of f include

– A(verage)-optimality fA(Σ) = tr(Σ−1)/p,
– D(eterminant)-optimality fD(Σ) = (det |Σ|)−1/p,
– T(race)-optimality fT (Σ) = p/tr(Σ),
– E(igen)-optimality fE(Σ) = ‖Σ−1‖2,
– V(araince)-optimality fV (Σ) = 1

n tr(XΣ−1X>), and
– G-optimality fG(Σ) = max diag(XΣ−1X>).

We refer the readers to [1] for a complete list and discussion of various optimality criteria used in the
experimental design literature.

Other applications In the full version we shall also discuss applications to Bayesian experimental
design, active learning and graph signa processing.
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