Georgia Institute of Technology, Atlanta GA, USA

# COMPUTATIONAL ASPECTS OF SELECTION OF EXPERIMENTS

Yining Wang Machine Learning Department, Carnegie Mellon University

Arxiv:1711.05174

Joint work with Zeyuan Allen-Zhu, Yuanzhi Li and Aarti Singh

# MOTIVATING APPLICATION

- Worst-case structural analysis
  - Maximum stress resulting from worst-case external forces
  - Example application: lightweight structural design in automated fiber process



# MOTIVATING APPLICATION

#### Worst-case structural analysis

- <u>Challenges</u>: Finite Element Analysis (FEA) for <u>every</u> external force locations would be computationally too expensive

Justification for single, normal, compressive load can be found in Ulu et al.' I7, based on Rockafellar's Theorem



# MOTIVATING APPLICATION

- Worst-case structural analysis
  - Idea: <u>Sample</u> a few "representative" force locations and build a <u>predictive</u> <u>model</u> for the rest locations
  - Challenge: How to determine the "best" representative locations



\* Linear regression model:  $y_i = \langle x_i, \theta_0 \rangle + \varepsilon_i$  modeling error top e-vec of surface Laplacian unknown regression model

Experiment selection:



- \* Linear regression model:  $y_i = \langle x_i, \theta_0 \rangle + \varepsilon_i$
- \* Ordinary Least Squares:  $\widehat{\theta} = (\sum_{i \in S} x_i x_i^{\top})^{-1} (\sum_{i \in S} y_i x_i)$ - By CLT:  $\sqrt{n}(\widehat{\theta} - \theta_0) \xrightarrow{d} \mathcal{N}(0, (\sum_{i \in S} x_i x_i^{\top})^{-1})$

(scaled) sample covariance, Fisher's Information

#### **Optimal experimental design**

Find subset  $S \subseteq [n]$ ,  $|S| \leq k$  so as to minimize

$$f\left(\sum_{j\in S} x_j x_j^{\top}\right)$$

"optimality criteria"

• Predictive model:  $y_i = \langle x_i, \theta_0 \rangle + \varepsilon_i$ 

#### **Optimal experimental design** Find subset $S \subseteq [n]$ , $|S| \leq k$ so as to minimize

$$f\left(\sum_{j\in S} x_j x_j^{\top}\right)$$

"optimality criteria"

. . . .

Example: A-optimality  $f_A(\Sigma) = \operatorname{tr}(\Sigma^{-1})/p$  as  $\mathbb{E} \|\hat{\theta} - \theta_0\|_2^2$ D-optimality  $f_D(\Sigma) = \det(\Sigma)^{-1/p}$ *E*-optimality  $f_E(\Sigma) = 1/||\Sigma^{-1}||_{\text{op}}$ **V-optimality** 

"scale invariant"

\* Predictive model:  $y_i = \langle x_i, \theta_0 \rangle + \varepsilon_i$ 

**Optimal experimental design** Find subset  $S \subseteq [n]$ ,  $|S| \leq k$  so as to minimize  $f\left(\sum_{j \in S} x_j x_j^{\top}\right)$ 

**Objective:** efficient approximation algorithms

$$f\left(\sum_{j\in\widehat{S}} x_j x_j^{\mathsf{T}}\right) \leq C(n,p) \cdot \min_{|S| \leq k} f\left(\sum_{j\in S} x_j x_j^{\mathsf{T}}\right)$$
"approximation ratio"

# EXISTING RESULTS

- Existing <u>positive</u> results
  - O(I) approximation for D-optimality (Nikolov & Singh, STOC'15)
  - O(n/k) approximation for A-optimality (Avron & Boutsidis, SIMAX'13)
- Existing <u>negative</u> results
  - NP-Hard for exact optimization of D/E-optimality (Summa et al., SODA'15)
  - NP-Hard for  $(I + \varepsilon)$  approximation for D-optimality when k = p(*Cerny & Hladik*, Comput. Optim. Appl.'12)

Applicable to only one or two criteria f

## REGULAR CRITERIA

#### **Optimal experimental design**

Find subset  $S \subseteq [n]$ ,  $|S| \leq k$  so as to minimize

 $f\left(\sum_{j\in S} x_j x_j^{\top}\right)$ 

"Regular" criteria:

(A1) **Convexity**: f (or its surrogate) is convex; (A2) **Monotonicity**:  $A \preceq B \Longrightarrow f(A) \ge f(B)$ (A3) **Reciprocal linearity**:  $f(tA) = t^{-1}f(A)$ 

All popular optimality criteria are "regular", e.g., A/D/E/V/G-optimality

# OUR RESULT

**Theorem.** For all regular criteria *f*, there exists a polynomial time  $(1+\varepsilon)$  approximation algorithm provided that

#. of design subsets 
$$k = \Omega(p/\varepsilon^2)$$
  
#. of variables / dimension

- Remark I: Concurrent to or after our works, I+ $\varepsilon$  approx. for D/Aoptimality are obtained under condition  $k = \Omega(p/\varepsilon + 1/\varepsilon^2)$ (Singh & Xie, SODA'18; Nikolov et al., arXiv'18)

- Remark 2: The  $k = \Omega(p/\varepsilon^2)$  condition is **tight** for E-optimality and continuous relaxation type methods. (Nikolov et al., arXiv'18)

# ALGORITHMIC FRAMEWORK

- \* <u>Continuous relaxation</u> of the discrete problem
- \* <u>Whitening</u> of candidate design points
- \* <u>Regret minimization</u> characterization of least eigenvalues
- \* <u>Greedy swapping</u> based on FTRL potential functions

# ALGORITHMIC FRAMEWORK

- \* <u>Continuous relaxation</u> of the discrete problem
- \* <u>Whitening</u> of candidate design points
- \* <u>Regret minimization</u> characterization of least eigenvalues
- \* <u>Greedy swapping</u> based on FTRL potential functions

## CONTINUOUS RELAXATION

#### **Optimal experimental design** Find subset $S \subseteq [n], |S| \leq k$ so as to minimize $f\left(\sum_{j \in S} x_j x_j^{\top}\right)$

- Equivalent formulation:  $\operatorname{relaxation:} 0 \leq s_i \leq 1$   $\min_{s_1, \dots, s_n} f\left(\sum_{i=1}^n s_i x_i x_i^{\top}\right) \quad s.t. \sum_{i=1}^n s_i \leq k, \quad s_i \in \{0, 1\}$ 

 Convex! Can be solved using classical methods (e.g., projected gradient/ mirror descent)

### CONTINUOUS RELAXATION

#### **Optimal experimental design** Find subset $S \subseteq [n]$ , $|S| \leq k$ so as to minimize $f\left(\sum_{j \in S} x_j x_j^{\top}\right)$

- Equivalent formulation:  $\min_{s_1, \dots, s_n} f\left(\sum_{i=1}^n s_i x_i x_i^{\top}\right) \qquad s.t. \sum_{i=1}^n s_i \le k, \quad s_i \in \{0, 1\}$ 

- Question: Round {s<sub>i</sub>} to integer values

# ALGORITHMIC FRAMEWORK

- \* <u>Continuous relaxation</u> of the discrete problem
- \* <u>Whitening</u> of candidate design points
- \* <u>Regret minimization</u> characterization of least eigenvalues
- \* <u>Greedy swapping</u> based on FTRL potential functions

### WHITENING

Rounding problem. Given optimal continuous solution  $\pi$ , round it to  $\widehat{s} \in \{0,1\}^n$ ,  $\sum_i \widehat{s}_i \leq k$  such that  $f(\sum_i \widehat{s}_i x_i x_i^{\top}) \leq (1 + O(\varepsilon)) \cdot f(\sum_i \pi_i x_i x_i^{\top})$ 

- Whitening:  $\widetilde{x}_i = W^{-1/2} x_i$  where  $W = \sum_i \pi_i x_i x_i^\top$ 

- By monotonicity of f, the rounding problem is reduced to

 $\lambda_{\min}(\sum_{i} \widehat{s}_{i} \widetilde{x}_{i} \widetilde{x}_{i}^{\top}) \ge 1 - O(\varepsilon)$ 

# ALGORITHMIC FRAMEWORK

- \* <u>Continuous relaxation</u> of the discrete problem
- \* <u>Whitening</u> of candidate design points
- \* <u>Regret minimization</u> characterization of least eigenvalues
- \* <u>Greedy swapping</u> based on FTRL potential functions

#### REGRET MINIMIZATION

- \* Matrix linear bandit/online learning: Action space  $\Delta_p = \{A \succeq 0, tr(A) = 1\}$ 
  - At each time t a player picks an **action**  $A_t \in \Delta_p$ , observes a **reference**  $F_t$  and suffers **loss**  $\langle A_t, F_t \rangle$
  - Objective: minimize **regret** of the action sequences

$$R(A) := \sum_{t=1}^{I} \langle F_t, A_t \rangle - \inf_{\substack{U \in \Delta_p \\ t=1}} \sum_{t=1}^{I} \langle F_t, \Delta \rangle$$

$$\frac{1}{\text{precisely } \lambda_{\min}(\sum F_t)}$$

### REGRET MINIMIZATION

- Matrix linear bandit/online learning:
  - At each time t a player picks an **action**  $A_t \in \Delta_p$ , observes a **reference**  $F_t$  and suffers **loss**  $\langle A_t, F_t \rangle$
  - Objective: minimize **regret** of the action sequences R(A)
  - Follow-The-Regularized-Leader policy:

$$A_{t} = \arg\min_{A \in \Delta^{p}} \left\{ w(A) + \alpha \cdot \sum_{\tau=1}^{t-1} \langle F_{\tau}, A \rangle \right\}$$
  
"regularizer"  $\tau = 1$ 

Example regularizers: 1. MWU:  $w(A) = \operatorname{tr}(A^{\top}(\log A - I)) \longrightarrow A_t = \exp\left\{cI - \alpha \sum_{\tau=1}^{t-1} F_{\tau}\right\}_2$ 2.  $l_{1/2}$ -regularization:  $w(A) = -2\operatorname{tr}(A^{1/2}) \longrightarrow A_t = \left(cI - \alpha \sum_{\tau=1}^{t-1} F_{\tau}\right)^2$ 

## REGRET MINIMIZATION

swapping of two design points

 $\begin{array}{l} \mbox{Regret lemma. Suppose } F_t = u_t u_t^\top - v_t v_t^\top. \mbox{ Then} \\ \inf_{U \in \Delta_p} \sum_{t=0}^k \langle F_t, U \rangle \geq \sum_{t=1}^k \frac{u_t^\top A_t u_t}{1 + 2\alpha u_t^\top A_t^{1/2} u_t} - \frac{v_t^\top A_t v_t}{1 - 2\alpha v_t^\top A_t^{1/2} v_t} - \frac{2\sqrt{p}}{\alpha} \\ \mbox{ penalty parameter in FTRL } \end{array}$ 

- Proved using classical analysis of regret of FTRL policies
- $F_t$ : **swapping** of two design points from the pool.

# ALGORITHMIC FRAMEWORK

- \* <u>Continuous relaxation</u> of the discrete problem
- \* <u>Whitening</u> of candidate design points
- \* <u>Regret minimization</u> characterization of least eigenvalues
- \* <u>Greedy swapping</u> based on FTRL potential functions

### GREEDY SWAPPING

**Regret lemma.** Suppose 
$$F_t = u_t u_t^\top - v_t v_t^\top$$
. Then  

$$\inf_{U \in \Delta_p} \sum_{t=0}^k \langle F_t, U \rangle \ge \sum_{t=1}^k \frac{u_t^\top A_t u_t}{1 + 2\alpha u_t^\top A_t^{1/2} u_t} - \frac{v_t^\top A_t v_t}{1 - 2\alpha v_t^\top A_t^{1/2} v_t} - \frac{2\sqrt{p}}{\alpha}$$

A "potential" function:

$$\psi(u,v;A) := \frac{u^{\top}Au}{1+2\alpha u^{\top}A^{1/2}u} - \frac{v^{\top}Av}{1-2\alpha v^{\top}A^{1/2}v}$$

#### GREEDY SWAPPING

**Regret lemma.** Suppose  $F_t = u_t u_t^{\top} - v_t v_t^{\top}$ . Then  $\inf_{U \in \Delta_p} \sum_{t=0}^k \langle F_t, U \rangle \ge \sum_{t=1}^k \frac{u_t^{\top} A_t u_t}{1 + 2\alpha u_t^{\top} A_t^{1/2} u_t} - \frac{v_t^{\top} A_t v_t}{1 - 2\alpha v_t^{\top} A_t^{1/2} v_t} - \frac{2\sqrt{p}}{\alpha}$ 

- The "greedy swapping" algorithm:
  - Start with an arbitrary set  $S_0 \subseteq [n]$  of size k
  - At each t, find  $i_t \in S_{t-1}, j_t \notin S_{t-1}$  that maximize  $\psi(x_{j_t}, x_{i_t}; A_{t-1})$
  - Greedy swapping:  $S_t \leftarrow S_{t-1} \cup \{j_t\} \setminus \{i_t\}$

#### GREEDY SWAPPING

 $\begin{array}{l} \text{Regret lemma. Suppose } F_t = u_t u_t^\top - v_t v_t^\top \text{. Then} \\ \inf_{U \in \Delta_p} \sum_{t=0}^k \langle F_t, U \rangle \geq \sum_{t=1}^k \frac{u_t^\top A_t u_t}{1 + 2\alpha u_t^\top A_t^{1/2} u_t} - \frac{v_t^\top A_t v_t}{1 - 2\alpha v_t^\top A_t^{1/2} v_t} - \frac{2\sqrt{p}}{\alpha} \end{array}$ 

- \* Proof framework:
  - If  $k \geq 5p/\varepsilon^2$ ,  $\alpha = \sqrt{p}/\varepsilon$  then the "progress" of each swapping is lower bounded by  $\varepsilon/k$  until  $\lambda_{\min} \geq 1 O(\varepsilon)$
  - Repeat the swapping for at most O(k/arepsilon) iterations until we're done.

#### SUMMARY

- Summary of our result (re-cap):
  - Objective: discrete optimization

 $\min_{s} f(\sum_{i} s_{i} x_{i} x_{i}^{\top}) \quad s.t. \quad s_{i} \in \{0, 1\}, \sum_{i} s_{i} \leq k$ 

- Regularity: f is "regular" if it is convex, monotonic and reciprocal linear
- Method: continuous relaxation + greedy swapping

**Theorem.** For all regular criteria *f*, there exists a polynomial time  $(1+\varepsilon)$  approximation algorithm provided that

$$k = \Omega(p/\varepsilon^2)$$

## APPLICATION

- Worst-case structural analysis
  - <u>Sample</u> a few "representative" force locations and build a <u>predictive model</u> for the rest locations





### APPLICATION

- Worst-case structural analysis
  - <u>Sample</u> a few "representative" force locations and build a <u>predictive model</u> for the rest locations
  - Predictive model: Laplacian (linear) smoothing

max. stress response  $y_i = \langle x_i, \theta_0 \rangle + \varepsilon_i$  modeling error top e-vec of surface Laplacian unknown regression model

- Typical problem parameter range:

 $n = 4000 \sim 6000, \ p = 10 \sim 15, \ k = 25 \sim 300$ 

# ALGORITHMIC FRAMEWORK

 Input: a structure with fixed boundary conditions (blue) and contact regions (red).



(a) Fertility

(b) Rocking Chair



(c) Shark

# RESULTS

 $n_F = 3914$ 

#### Results for the "Fertility" model

| n <sub>FL</sub> =<br>UNIFORM<br>LEVSCORE<br>K-MEANS<br>SAMPLING | 25<br>316.5<br>252.5<br>237<br>210.5 | 50<br>149<br>54.5<br><b>25</b><br>148.5 | 100<br>78.5<br>73.5<br>61<br>51                 | 150<br>37.5<br>68.5<br>82                               | 200<br>98.5<br>42.5<br>57                                      | 250<br>42.5<br>31<br>17                                                                                                                                                                                      | 300<br>39<br>13.5<br>16                                                                                                                                                                            | Total FEAs<br>$178.5 (n_{FL} = 100)$<br>$104.5 (n_{FL} = 50)$<br>$75 (n_{FL} = 50)$                                                                                                                                        |
|-----------------------------------------------------------------|--------------------------------------|-----------------------------------------|-------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| UNIFORM<br>LEVSCORE<br>K-MEANS<br>SAMPLING                      | 316.5<br>252.5<br>237<br>210.5       | 149<br>54.5<br><b>25</b><br>148.5       | 78.5<br>73.5<br>61<br>51                        | 37.5<br>68.5<br>82                                      | 98.5<br>42.5<br>57                                             | 42.5<br>31<br><b>17</b>                                                                                                                                                                                      | 39<br>13.5<br><b>16</b>                                                                                                                                                                            | 178.5 ( $n_{FL} = 100$ )<br>104.5 ( $n_{FL} = 50$ )                                                                                                                                                                        |
| LEVSCORE<br>K-MEANS<br>SAMPLING                                 | 252.5<br>237<br>210.5                | 54.5<br><b>25</b><br>148.5              | 73.5<br>61<br>51                                | 68.5<br>82                                              | 42.5<br>57                                                     | 31<br>17                                                                                                                                                                                                     | 13.5<br><b>16</b>                                                                                                                                                                                  | 104.5 ( $n_{FL} = 50$ )                                                                                                                                                                                                    |
| K-MEANS<br>SAMPLING                                             | 237<br>210.5                         | <b>25</b><br>148.5                      | 61<br>51                                        | 82                                                      | 57                                                             | 17                                                                                                                                                                                                           | 16                                                                                                                                                                                                 | 75(m - 50)                                                                                                                                                                                                                 |
| SAMPLING                                                        | 210.5                                | 148.5                                   | 51                                              |                                                         |                                                                |                                                                                                                                                                                                              |                                                                                                                                                                                                    | $13 (n_{FL} = 30)$                                                                                                                                                                                                         |
| Cheppy                                                          |                                      |                                         | 51                                              | 30                                                      | 35.5                                                           | 34                                                                                                                                                                                                           | 26.5                                                                                                                                                                                               | $151 (n_{rr} = 100)$                                                                                                                                                                                                       |
| GREEDY                                                          | 12                                   | 26                                      | 13                                              | 7                                                       | 11                                                             | 25                                                                                                                                                                                                           | 33                                                                                                                                                                                                 | $37 (n_{FL} = 25)$                                                                                                                                                                                                         |
| Uniform                                                         | 285                                  | 80.5                                    | 52                                              | 10                                                      | 63                                                             | 10                                                                                                                                                                                                           | 10                                                                                                                                                                                                 | $130.5 (n_{FL} = 50)$                                                                                                                                                                                                      |
| LEVSCORE                                                        | 175                                  | 26.5                                    | 55.5                                            | 59                                                      | 17                                                             | 10                                                                                                                                                                                                           | 7                                                                                                                                                                                                  | 76.5 ( $n_{FL} = 50$ )                                                                                                                                                                                                     |
| K-MEANS                                                         | 144                                  | 2                                       | 19                                              | 22                                                      | 14                                                             | 2                                                                                                                                                                                                            | 2                                                                                                                                                                                                  | $52 (n_{FL} = 50)$                                                                                                                                                                                                         |
| SAMPLING                                                        | 202                                  | 113                                     | 10                                              | 7                                                       | 11                                                             | 8                                                                                                                                                                                                            | 6                                                                                                                                                                                                  | $110 (n_{EI} = 100)$                                                                                                                                                                                                       |
|                                                                 | 4                                    | 3                                       | 4                                               | 7                                                       | 5                                                              | 2                                                                                                                                                                                                            | 6                                                                                                                                                                                                  | <b>29</b> $(n_{FL} = 25)$                                                                                                                                                                                                  |
| ł                                                               | X-MEANS<br>Sampling<br>Greedy        | K-means 144<br>Sampling 202<br>Greedy 4 | K-MEANS 144 2<br>SAMPLING 202 113<br>GREEDY 4 3 | X-MEANS 144 2 19<br>Sampling 202 113 10<br>Greedy 4 3 4 | X-MEANS 144 2 19 22<br>SAMPLING 202 113 10 7<br>GREEDY 4 3 4 7 | X-MEANS         144         2         19         22         14           SAMPLING         202         113         10         7         11           GREEDY         4         3         4         7         5 | X-MEANS       144       2       19       22       14       2         SAMPLING       202       113       10       7       11       8         GREEDY       4       3       4       7       5       2 | X-MEANS       144       2       19       22       14       2       2         SAMPLING       202       113       10       7       11       8       6         GREEDY       4       3       4       7       5       2       6 |

Our algorithm

# RESULTS

 $n_F = 5348$ 

#### Results for the "RockingChair" model

|                 | $n_{FL} =$ | 25    | 50    | 100   | 150  | 200   | 250   | 300  | Total FEAs                |
|-----------------|------------|-------|-------|-------|------|-------|-------|------|---------------------------|
| $\delta = 0$    | UNIFORM    | 716   | 857   | 385.5 | 42   | 135.5 | 269.5 | 36   | 192 ( $n_{FL} = 150$ )    |
|                 | LEVSCORE   | 764.5 | 208.5 | 36    | 36   | 36    | 36    | 36   | 136 ( $n_{FL} = 100$ )    |
|                 | K-MEANS    | 4013  | 4400  | 4573  | 4301 | 4320  | 4620  | 4757 | $4038 (n_{FL} = 25)$      |
|                 | SAMPLING   | 672.5 | 282   | 38.5  | 38   | 38    | 36    | 36   | $138.5(n_{FL} = 100)$     |
|                 | GREEDY     | 36    | 35    | 208   | 35   | 36    | 36    | 36   | <b>61</b> $(n_{FL} = 25)$ |
| $\delta = 0.05$ | UNIFORM    | 404   | 466   | 201.5 | 20   | 88    | 93.5  | 18   | $170 (n_{FL} = 150)$      |
|                 | LEVSCORE   | 444   | 192.5 | 20    | 18.5 | 18    | 18    | 18   | $120 (n_{FL} = 100)$      |
|                 | K-MEANS    | 285   | 466   | 14    | 24   | 26    | 161   | 195  | 114 ( $n_{FL} = 100$ )    |
|                 | SAMPLING   | 540   | 268   | 21.5  | 20.5 | 20.5  | 20    | 20   | $121.5 (n_{FL} = 100)$    |
|                 | GREEDY     | 20    | 19    | 200   | 20   | 20    | 20    | 20   | <b>45</b> $(n_{FL} = 25)$ |

# RESULTS



#### Results for the "Shark" model

|                       | $n_{FL} =$ | 25    | 50  | 100   | 150   | 200 | 250 | 300 | Total FEAs                  |
|-----------------------|------------|-------|-----|-------|-------|-----|-----|-----|-----------------------------|
| $oldsymbol{\delta}=0$ | Uniform    | 585   | 384 | 141.5 | 208.5 | 20  | 9   | 9.5 | 220 ( $n_{FL} = 200$ )      |
|                       | LEVSCORE   | 478.5 | 9   | 9     | 9     | 9   | 9   | 9   | 59 ( $n_{FL} = 50$ )        |
|                       | K-MEANS    | 133   | 102 | 9     | 9     | 9   | 9   | 9   | 109 ( $n_{FL} = 100$ )      |
|                       | SAMPLING   | 963.5 | 87  | 9     | 9     | 9   | 9   | 9   | $109 (n_{FL} = 100)$        |
|                       | GREEDY     | 9     | 171 | 9     | 9     | 9   | 9   | 9   | <b>34</b> ( $n_{FL} = 25$ ) |
| $\delta = 0.01$       | UNIFORM    | 568.5 | 341 | 131.5 | 156   | 15  | 4   | 4.5 | $215 (n_{FL} = 200)$        |
|                       | LEVSCORE   | 416   | 4   | 4     | 4     | 4   | 4   | 4   | $54 (n_{FL} = 50)$          |
|                       | K-means    | 129   | 84  | 4     | 4     | 4   | 4   | 4   | $104~(n_{FL}=100)$          |
|                       | SAMPLING   | 872.5 | 69  | 4     | 4     | 4   | 4   | 4   | $104 (n_{FL} = 100)$        |
|                       | GREEDY     | 4     | 115 | 4     | 4     | 4   | 4   | 4   | <b>29</b> ( $n_{FL} = 25$ ) |

# SAMPLING ALGORITHM

- \* **<u>Results</u>**: comparison with equi-distance sampling
  - K=100 sampling points

"Sensitive" regions (e.g., arms, wingtips) more sampled

"Easy" regions less sampled



# SAMPLING ALGORITHM

- \* **<u>Results</u>**: comparison with equidistance sampling
  - K=200 sampling points
  - "Sensitive" regions (e.g., arms, wingtips) more sampled
- "Easy" regions less sampled



#### EXTENSIONS

- "Robust" experimental design
  - Design points are subject to adversarial "perturbations"
  - Example discrete optimization problem:

$$\min_{s_1, \cdots, s_n} \max_{\xi_1, \cdots, \xi_n} f\left(\sum_{i=1}^n (x_i + \xi_i)(x_i + \xi_i)^\top\right)$$

s.t.  $s_i \in \{0, 1\}, \sum_i s_i \le k, \|\xi_i\|_2 \le \delta$ 

#### EXTENSIONS

- "Random design" linear regression
  - Random designs  $(x_i, y_i) \sim D$ , but  $\mathbb{E}[y_i | x_i] \neq \langle x_i, \beta_0 
    angle$
  - Worst-case optimal designs:

$$\min_{S} \sup_{D \in \mathcal{D}} \mathbb{E}_{D,S} \left[ \|\widehat{\beta}_{S} - \beta_{0}\|_{2}^{2} \right]$$

S: selected design subset  $\beta_0$ : best linear predictor w.r.t. D  $\beta_s$ : OLS on  $X_s$  variance:  $f(\sum_{i \in S} x_i x_i^{\top})$ 

Bías: dependent on D

#### Thank you!