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MOTIVATING APPLICATION
Worst-case structural analysis
- Maximum stress resulting from worst-case external forces

- Example application: lightweight structural design in automated fiber 
process



MOTIVATING APPLICATION

Worst-case structural analysis
- Challenges: Finite Element Analysis (FEA) for every external force 

locations would be computationally too expensive
Justification for single, normal, compressive load can be found in Ulu et al.’17, based on 
Rockafellar’s Theorem



MOTIVATING APPLICATION

Worst-case structural analysis
- Idea: Sample a few “representative” force locations and build a predictive 

model for the rest locations

- Challenge: How to determine the “best” representative locations 

~4000 nodes 200 nodes



PROBLEM FORMULATION

Linear regression model:

Experiment selection:

yi = hxi, ✓0i+ "i
max. stress response

top e-vec of surface Laplacian unknown regression model

modeling error
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PROBLEM FORMULATION

Linear regression model:

Ordinary Least Squares:
- By CLT: 

yi = hxi, ✓0i+ "i
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PROBLEM FORMULATION

Predictive model: yi = hxi, ✓0i+ "i

Optimal experimental design 
Find subset              ,               so as to minimizeS ✓ [n] |S|  k

f

⇣P
j2S xjx

>
j

⌘

Example:     A-optimality
D-optimality
E-optimality
V-optimality
….

fA(⌃) = tr(⌃�1)/p

fD(⌃) = det(⌃)�1/p

fE(⌃) = 1/k⌃�1k
op

MSE Ek✓̂ � ✓0k22
“scale invariant”

“optimality criteria”



PROBLEM FORMULATION

Predictive model: yi = hxi, ✓0i+ "i

Optimal experimental design 
Find subset              ,               so as to minimizeS ✓ [n] |S|  k
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Objective: efficient approximation algorithms
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EXISTING RESULTS

Existing positive results
- O(1) approximation for D-optimality 

- O(n/k) approximation for A-optimality

Existing negative results
- NP-Hard for exact optimization of D/E-optimality

- NP-Hard for (1+𝜀) approximation for D-optimality when k=p

(Nikolov & Singh, STOC’15)

(Avron & Boutsidis, SIMAX’13)

(Summa et al., SODA’15)

(Cerny & Hladik, Comput. Optim. Appl.’12)

Applicable to only one or two criteria f



REGULAR CRITERIA

Optimal experimental design 
Find subset              ,               so as to minimizeS ✓ [n] |S|  k
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“Regular” criteria: (A1) Convexity: f (or its surrogate) is convex;
(A2) Monotonicity: 
(A3) Reciprocal linearity: 

A � B =) f(A) � f(B)
f(tA) = t�1f(A)

All popular optimality criteria are “regular”, 
e.g., A/D/E/V/G-optimality



OUR RESULT

- Remark 1: Concurrent to or after our works, 1+𝜀 approx. for D/A-
optimality are obtained under condition 

- Remark 2: The                     condition is tight for E-optimality and 
continuous relaxation type methods.

Theorem. For all regular criteria f, there exists a polynomial 
time (1+𝜀) approximation algorithm provided that

k = ⌦(p/"2)

k = ⌦(p/"2)

k = ⌦(p/"+ 1/"2)
(Singh & Xie, SODA’18; Nikolov et al., arXiv’18)

(Nikolov et al., arXiv’18)

#. of design subsets #. of variables / dimension



ALGORITHMIC FRAMEWORK

Continuous relaxation of the discrete problem

Whitening of candidate design points

Regret minimization characterization of least eigenvalues 

Greedy swapping based on FTRL potential functions



ALGORITHMIC FRAMEWORK

Continuous relaxation of the discrete problem

Whitening of candidate design points

Regret minimization characterization of least eigenvalues 

Greedy swapping based on FTRL potential functions



CONTINUOUS RELAXATION

- Equivalent formulation:

- Convex! Can be solved using classical methods (e.g., projected gradient/
mirror descent)

Optimal experimental design 
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CONTINUOUS RELAXATION

- Equivalent formulation:

- Question: Round {si} to integer values

Optimal experimental design 
Find subset              ,               so as to minimizeS ✓ [n] |S|  k
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ALGORITHMIC FRAMEWORK

Continuous relaxation of the discrete problem

Whitening of candidate design points

Regret minimization characterization of least eigenvalues 

Greedy swapping based on FTRL potential functions



WHITENING

- Whitening:                              where 

- By monotonicity of f, the rounding problem is reduced to

Rounding problem. Given optimal continuous solution    , 
round it to                                         such that 
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ALGORITHMIC FRAMEWORK

Continuous relaxation of the discrete problem

Whitening of candidate design points

Regret minimization characterization of least eigenvalues 

Greedy swapping based on FTRL potential functions



REGRET MINIMIZATION

Matrix linear bandit/online learning:
- At each time t a player picks an action              , observes a 

reference     and suffers loss

- Objective: minimize regret of the action sequences
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REGRET MINIMIZATION

Matrix linear bandit/online learning:
- At each time t a player picks an action              , observes a 

reference     and suffers loss

- Objective: minimize regret of the action sequences R(A)

- Follow-The-Regularized-Leader policy: 
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hAt, FtiFt
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“regularizer”

Example regularizers: 
1. MWU: 
2. l1/2-regularization: 
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REGRET MINIMIZATION

- Proved using classical analysis of regret of FTRL policies

- Ft: swapping of two design points from the pool.

Regret lemma. Suppose                                 . Then Ft = utu
>
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>
t
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ALGORITHMIC FRAMEWORK

Continuous relaxation of the discrete problem

Whitening of candidate design points

Regret minimization characterization of least eigenvalues 

Greedy swapping based on FTRL potential functions



GREEDY SWAPPING

A “potential” function: 
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GREEDY SWAPPING

The “greedy swapping” algorithm:

- Start with an arbitrary set              of size k

- At each t, find                                 that maximize

- Greedy swapping:   
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GREEDY SWAPPING

Proof framework:

- If                                    then the “progress” of each swapping is lower 
bounded by        until

- Repeat the swapping for at most              iterations until we’re done.
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SUMMARY

Summary of our result (re-cap):
- Objective: discrete optimization

- Regularity: f is “regular” if it is convex, monotonic and reciprocal linear

- Method: continuous relaxation + greedy swapping
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Theorem. For all regular criteria f, there exists a polynomial 
time (1+𝜀) approximation algorithm provided that

k = ⌦(p/"2)



APPLICATION

Worst-case structural analysis
- Sample a few “representative” force locations and build a predictive model 

for the rest locations

~4000 nodes 200 nodes



APPLICATION

Worst-case structural analysis
- Sample a few “representative” force locations and build a predictive model 

for the rest locations

- Predictive model: Laplacian (linear) smoothing

- Typical problem parameter range:

yi = hxi, ✓0i+ "i
max. stress response

top e-vec of surface Laplacian unknown regression model

modeling error

n = 4000 ⇠ 6000, p = 10 ⇠ 15, k = 25 ⇠ 300



ALGORITHMIC FRAMEWORK

Input: a structure with fixed boundary conditions (blue) 
and contact regions (red).



RESULTS

Results for the “Fertility” model

Our algorithm

nF = 3914



RESULTS

Results for the “RockingChair” model

nF = 5348



RESULTS

Results for the “Shark” model

nF = 4281



SAMPLING ALGORITHM

Results: comparison with equi-distance sampling
- K=100 sampling points

“Sensitive” regions 
(e.g., arms, wingtips) 
more sampled

“Easy” regions less 
sampled

Equidistant (naive)

Our solution



SAMPLING ALGORITHM

Results: comparison with equidistance sampling
- K=200 sampling points

“Sensitive” regions 
(e.g., arms, wingtips) 
more sampled

“Easy” regions less 
sampled



EXTENSIONS

“Robust” experimental design
- Design points are subject to adversarial “perturbations”

- Example discrete optimization problem: 

min

s1,··· ,sn
max

⇠1,··· ,⇠n
f

 
nX

i=1

(xi + ⇠i)(xi + ⇠i)
>

!

s.t. si 2 {0, 1},
P

i si  k, k⇠ik2  �

Adversarial perturbations



EXTENSIONS

“Random design” linear regression
- Random designs                     , but

- Worst-case optimal designs:  

(xi, yi) ⇠ D E[yi|xi] 6= hxi,�0i
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S: selected design subset 
β0: best linear predictor w.r.t. D 
βS: OLS on XS
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Thank you!


