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Machine Learning: the setup
❖ The machine learning problem

❖ Each data point              consists of data      and label

❖ Access to training data

❖ Goal: train classifier     to predict y based on x

❖ Example: Classification

(xi, yi) xi yi

(x1, y1), · · · , (xn, yn)
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Machine learning: passive vs. active
❖ Classical framework: passive learning

❖ I.I.D. training data

❖ Evaluation: generalization error  

❖ An active learning framework

❖ Data are cheap, but labels are expensive!

❖ Example: medical data (labels require domain knowledge)

❖ Active learning: minimize label requests
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i.i.d.⇠ D
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Active Learning
❖ Pool-based active learning

❖ The learner A has access to unlabeled data stream

❖ For each      , the learner decides whether to query; if 
label requested, A obtains       

❖ Minimize number of requests, while scanning 
through polynomial number of unlabeled data.

x1, x2, · · ·
i.i.d.⇠ D

xi

yi



Active Learning
❖ Example: learning homogeneous linear classifier

❖ Basic (passive) approach: empirical risk minimization 
(ERM)

❖ How about active learning?

ŵ 2 argminkwk2=1

nX
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❖ Data dimension d, query budget T, no. of iterations E

❖ At each iteration

❖ Determine parameters

❖ Find                  samples in

❖ Constrained ERM:     

❖ Final output: 

Margin-based Active Learning

k 2 {1, · · · , E}

bk�1,�k�1

n = T/E {x 2 Rd : |ŵk�1 · x|  bk�1}

ŵE

BALCAN, BRODER and ZHANG, COLT’07

ŵk = min
✓(w,ŵk�1)�k�1

L({xi, yi}ni=1;w)



Tsybakov Noise Condition
❖ There exist constants                              such that

❖                    : key noise magnitude parameter in TNC

❖ Which one is harder?

µ > 0,↵ 2 (0, 1)

µ · ✓(w,w⇤)1/(1�↵)  err(w)� err(w⇤)

↵ 2 (0, 1)

✓(w,w⇤)

err(w)� err(w⇤)

small ↵

large ↵



Margin-based Active Learning
❖ Main Theorem [BBZ07]: when D is the uniform 

distribution, the margin-based algorithm achieves

err(ŵ)� err(w⇤) = eOP
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Proof outline
❖ At each iteration k, perform restricted ERM over within-

margin data 

BALCAN, BRODER and ZHANG, COLT’07

ŵk = argmin
✓(w,ŵk�1)�k�1

cerr(w|S1),

S1 = {x : |x>
ŵk�1|  bk�1}



Proof outline
❖ Key fact: if                                     and                             then

❖ Proof idea: decompose the excess error into two terms

❖ Must ensure w* is always within reach! 
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Problem
❖ What if     is not known? How to set key parameters             

❖ If the true parameter is      but the algorithm is run with             

❖ The convergence is       instead of      ! 

↵
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↵
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Noise-adaptive Algorithm 
❖ Agnostic parameter settings

❖ Main analysis: two-phase behaviors

❖ “Tipping point”:                             , depending on

❖ Phase I:             ,  we have that

❖ Phase II:             , we have that
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Noise-Adaptive Analysis
❖ Main theorem: for all

❖ Matching the upper bound in [BBZ07]

❖ … and also a lower bound (this paper)

err(ŵ)� err(w⇤) = eOP
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Lower Bound
❖ Is there any active learning algorithm that can do better 

than the                            sample complexity?

❖ In general, no [Henneke, 2015]. But the data distribution 
D is quite contrived in the negative example.

❖ We show that                             is tight even if D is as 
simple as the uniform distribution over unit sphere. 

eOP ((d/T )
1/2↵)

eOP ((d/T )
1/2↵)



Lower Bound
❖ The “Membership Query Synthesis” (QS) setting

❖ The algorithm A picks an arbitrary data point 

❖ The algorithm receives its label

❖ Repeat the procedure T times, with T the budget 

❖ QS is more powerful than pool-based setting when D 
has density bounded away from below.

❖ We prove lower bounds for the QS setting, which 
implies lower bounds in the pool-based setting.

xi

yi



Tsybakov’s Main Theorem
❖ Let                                    be a set of models. Suppose

❖ Separation:

❖ Closeness: 

❖ Regularity:   

❖ Then the following bound holds

TSYBAKOV and ZAIATS, Introduction to Nonparametric Estimation
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Negative Example Construction
❖ Separation: 

❖ Find hypothesis class                                    such that

❖ … can be done for all                      , using constant 
weight coding

❖ … can guarantee that  

D(fj , fk) � 2⇢, 8j, k 2 {1, · · · ,M}, j 6= k

W = {w1, · · · , wm}

t  ✓(wi, wj)  6.5t, 8i 6= j

t 2 (0, 1/4)

log |W| = ⌦(d)



Negative Example 
Construction



Negative Example Construction
❖ Closeness: 1

M

MX

j=1

KL(PfjkPf0)  � logM

Proof of Lemma 5. We first prove that w⇤
i is the Bayes classifier for P (i)

Y |X and furthermore P
(i)
Y |X satisfies the TNC condition

in Eq. (7) with respect to w⇤
i . note that ⌘(x) = 1

2

if and only if |'(x,w⇤
1

)|  6.5t and '(x,w⇤
i ) = 0. Therefore, w⇤

i is the Bayes
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i )) because ✓(w⇤

1

, w⇤
i )  6.5t.
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)| > 6.5t.
Next we prove that P (i)
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1
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#
↵

1�↵ } � min{1/2, µ
0

#0 ↵
1�↵ } � µ

0

#0 ↵
1�↵ . (34)

The last inequality holds due to the fact that Eq. (7) holds for all # 2 [0,⇡]. Therefore, P (i)
Y |X satisfies the TNC lower bound for

|#| > 6.5t with respect to w⇤
i .

Lastly, we prove the upper bound on KL(Pi,T kPj,T ) in Eq. (13). Here Pi,T represents the data/label distribution for an active
learning algorithm that is allowed for T label queries under P (i)

Y |X . Mathematically, Pi,T is a distribution over (X ⇥ Y)

T and
can be decomposed as
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because a query synthetic algorithm A 2 Aqs

d,T proposes data points and requests labels in a sequential, feedback-driven
manner. Note that PXt|X1,Y1,··· ,Xt�1,Yt�1

does not depend on i because the underlying label distribution P
(i)
Y |X is unknown to

A. Subsequently, we establish an upper bound on KL(Pi,T kPj,T ) following analysis in (Castro and Nowak 2008): (Ei and Ej

denote the expectation taking with respect to Pi,T and Pj,T )
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Eq. (35) shows that the upper bound on KL(Pi,T kPj,T ) does not depend on which active learning algorithm is used, though
both Pi,T and Pj,T are defined in an algorithm-dependent way. Note that both P

(i)
Y |X(·|x) and P

(j)
Y |X(·|x) are Bernoulli random

variables. To bound their KL divergence we cite the following result from (Castro and Nowak 2008):

Lemma 10 ((Castro and Nowak 2008), Lemma 1). Let P and Q be Bernoulli random variables with parameters 1/2� p and
1/2� q, respectively. If |p|, |q|  1/4 then KL(PkQ)  8(p� q)2.
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⌘
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Lower Bound
❖ Let                                    be a set of models. Suppose

❖ Separation:

❖ Closeness: 

❖ Regularity:   

❖ Take

❖ We have that 

TSYBAKOV and ZAIATS, Introduction to Nonparametric Estimation
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D(fj , fk) � 2⇢, 8j, k 2 {1, · · · ,M}, j 6= k
1

M

MX

j=1

KL(PfjkPf0)  � logM

Pfj ⌧ Pf0 , 8j 2 {1, · · · ,M}

⇢ = ⇥(t) = ⇥((d/T )(1�↵)/2↵)

inf
ŵ
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Lower Bound
❖ Suppose D has density bounded away from below and 

fix                              . Let            be class of distributions 
satisfying            -TNC. Then we have that   

µ > 0,↵ 2 (0, 1) PY |X
(µ,↵)

inf
A

sup
P2PY |X

EP [err(ŵ)� err(w⇤)] � ⌦
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Extension: “Proactive” learning
❖ Suppose there are m different users (labelers) who share 

the same classifier w* but with different TNC 
parameters

❖ The TNC parameters are not known.

❖ At each iteration, the algorithm picks a data point x 
and also a user j, and observes f(x;j)

❖ The goal is to estimate the Bayes classifier w*

↵1, · · · ,↵m



Extension: “Proactive” learning
❖ Algorithm framework:

❖ Operate in                          iterations.

❖ At each iteration, use conventional Bandit algorithms 
to address exploration-exploitation tradeoff 

❖ Key property: search space           and margin          does 
not depend on unknown TNC parameters.

❖ Many interesting extensions: what if multiple labelers 
can be involved each time?

E = O(log T )

{�k} {bk}



Thanks! Questions?


