Noise-adaptive Marginbased Active Learning, and Lower Bounds

<u>Yining Wang</u>, Aarti Singh Carnegie Mellon University

Machine Learning: the setup

- * The machine learning problem
 - * Each data point (x_i, y_i) consists of data x_i and label y_i
 - * Access to training data $(x_1, y_1), \dots, (x_n, y_n)$
 - * Goal: train classifier \hat{f} to predict *y* based on *x*
 - * Example: Classification

$$x_i \in \mathbb{R}^d, y_i \in \{+1, -1\}$$

Machine learning: passive vs. active

- Classical framework: passive learning
 - * I.I.D. training data $(x_i, y_i) \stackrel{i.i.d.}{\sim} D$
 - * Evaluation: generalization error $\Pr \left| y \neq \hat{f}(x) \right|$
- * An active learning framework
 - * Data are cheap, but labels are expensive!
 - * Example: medical data (labels require domain knowledge)
 - * Active learning: minimize label requests

Active Learning

- Pool-based active learning
 - * The learner *A* has access to unlabeled data stream $x_1, x_2, \dots \stackrel{i.i.d.}{\sim} D$
 - * For each x_i , the learner decides whether to query; if label requested, *A* obtains y_i
 - * Minimize number of requests, while scanning through polynomial number of unlabeled data.

Active Learning

- * Example: learning homogeneous linear classifier $y_i = \operatorname{sgn}(w^{\top} x_i) + \operatorname{noise}$
- * Basic (passive) approach: empirical risk minimization (ERM) $\hat{w} \in \operatorname{argmin}_{\|w\|_2=1} \sum_{i=1}^n I[y_i \neq \operatorname{sgn}(w^\top x_i)]$
- * How about active learning?

Margin-based Active Learning

BALCAN, BRODER and ZHANG, COLT'07

- * Data dimension *d*, query budget *T*, no. of iterations *E*
- * At each iteration $k \in \{1, \cdots, E\}$
 - * Determine parameters b_{k-1}, β_{k-1}
 - * Find n = T/E samples in $\{x \in \mathbb{R}^d : |\hat{w}_{k-1} \cdot x| \le b_{k-1}\}$
 - * Constrained ERM: $\hat{w}_k = \min_{\substack{\theta(w, \hat{w}_{k-1}) \le \beta_{k-1}}} L(\{x_i, y_i\}_{i=1}^n; w)$
- * Final output: \hat{w}_E

Tsybakov Noise Condition

* There exist constants $\mu > 0, \alpha \in (0, 1)$ such that $\mu \cdot \theta(w, w^*)^{1/(1-\alpha)} \leq \operatorname{err}(w) - \operatorname{err}(w^*)$

* $\alpha \in (0,1)$: key noise magnitude parameter in TNC

* Which one is harder?

Margin-based Active Learning

 Main Theorem [BBZ07]: when D is the uniform distribution, the margin-based algorithm achieves

$$\operatorname{err}(\hat{w}) - \operatorname{err}(w^*) = \widetilde{O}_P \left\{ \left(\frac{d}{T}\right)^{1/2\alpha} \right\}$$

Passive Learning: $O((d/T)^{\frac{1-\alpha}{2\alpha}})$

Proof outline

BALCAN, BRODER and ZHANG, COLT'07

* At each iteration *k*, perform *restricted* ERM over *withinmargin* data

$$\hat{w}_{k} = \underset{\theta(w, \hat{w}_{k-1}) \leq \boldsymbol{\beta}_{k-1}}{\operatorname{argmin}} \quad \widehat{\operatorname{err}}(w|S_{1}),$$
$$S_{1} = \{x : |x^{\top}\hat{w}_{k-1}| \leq \boldsymbol{b}_{k-1}\}$$

Proof outline

- * Key fact: if $\theta(\hat{w}_{k-1}, w^*) \leq \beta_{k-1}$ and $b_k = \tilde{\Theta}(\beta_k/\sqrt{d})$ then $\operatorname{err}(\hat{w}_k) - \operatorname{err}(w^*) = \tilde{O}\left(\beta_{k-1}\sqrt{d/T}\right)$
- Proof idea: decompose the excess error into two terms

$$\underbrace{\left[\operatorname{err}(\hat{w}_{k}|S_{1}) - \operatorname{err}(w^{*}|S_{1})\right]}_{\tilde{O}(\sqrt{d/T})} \underbrace{\Pr[x \in S_{1}]}_{\tilde{O}(b_{k-1}\sqrt{d})}$$

$$\underbrace{\operatorname{Forr}(\hat{w}_{k}|S^{c}) - \operatorname{err}(w^{*}|S^{c})]}_{\operatorname{Pr}[x \in S^{c}]} - \underbrace{\tilde{O}(\operatorname{tan}\beta_{k-1})}_{\operatorname{Pr}[x \in S^{c}]} = \underbrace{\tilde{O}(\operatorname{tan}\beta_{k-1}$$

 $\left[\operatorname{err}(\hat{w}_k | S_1^c) - \operatorname{err}(w^* | S_1^c)\right] \Pr[x \in S_1^c] = O(\tan \beta_{k-1})$

Must ensure w* is always within reach!

$$\beta_k = 2^{\alpha - 1} \beta_{k - 2}$$

Problem

- * What if α is not known? How to set key parameters b_k, β_k
- * If the true parameter is α but the algorithm is run with $\alpha' > \alpha$
- * The convergence is α' instead of α !

Noise-adaptive Algorithm

Agnostic parameter settings

$$E = \frac{1}{2} \log T, \beta_k = 2^{-k} \pi, b_k = \frac{2\beta_k}{\sqrt{d}} \sqrt{2E}$$

- Main analysis: two-phase behaviors
 - * *"Tipping point"*: $k^* \in \{1, \cdots, E\}$, depending on α
 - * *Phase I:* $k \leq k^*$, we have that $\theta(\hat{w}_k, w^*) \leq \beta_k$
 - * *Phase II:* $k > k^*$, we have that $\operatorname{err}(\hat{w}_{k+1}) - \operatorname{err}(\hat{w}_k) \le \beta_k \cdot \widetilde{O}(\sqrt{d/T})$

Noise-Adaptive Analysis

* Main theorem: for all $\alpha \in (0, 1/2)$

$$\operatorname{err}(\hat{w}) - \operatorname{err}(w^*) = \widetilde{O}_P \left\{ \left(\frac{d}{T}\right)^{1/2\alpha} \right\}$$

- * Matching the upper bound in [BBZ07]
- * ... and also a *lower bound* (this paper)

Lower Bound

- * Is there any active learning algorithm that can do better than the $\tilde{O}_P((d/T)^{1/2\alpha})$ sample complexity?
- * In general, no [Henneke, 2015]. But the data distribution *D* is quite contrived in the negative example.
- * We show that $\tilde{O}_P((d/T)^{1/2\alpha})$ is tight even if *D* is as simple as the uniform distribution over unit sphere.

Lower Bound

- * The "Membership Query Synthesis" (QS) setting
 - * The algorithm A picks an *arbitrary* data point x_i
 - * The algorithm receives its label y_i
 - * Repeat the procedure *T* times, with *T* the budget
- * QS is more powerful than pool-based setting when *D* has density bounded away from below.
- * We prove lower bounds for the QS setting, which implies lower bounds in the pool-based setting.

Tsybakov's Main Theorem

TSYBAKOV and ZAIATS, Introduction to Nonparametric Estimation

- * Let $\mathcal{F}_0 = \{f_0, \dots, f_M\}$ be a set of models. Suppose
 - * Separation: $D(f_j, f_k) \ge 2\rho, \forall j, k \in \{1, \dots, M\}, j \neq k$ * Closeness: $\frac{1}{M} \sum_{j=1}^{M} \operatorname{KL}(P_{f_j} \| P_{f_0}) \le \gamma \log M$
 - * <u>Regularity</u>: $P_{f_j} \ll P_{f_0}, \forall j \in \{1, \cdots, M\}$

Then the following bound holds

$$\inf_{\hat{f}} \sup_{f \in \mathcal{F}_0} \Pr_f \left[D(\hat{f}, f) \ge \rho \right] \ge \frac{\sqrt{M}}{1 + \sqrt{M}} \left(1 - 2\gamma - 2\sqrt{\frac{\gamma}{\log M}} \right)$$

Negative Example Construction

- * <u>Separation</u>: $D(f_j, f_k) \ge 2\rho, \forall j, k \in \{1, \cdots, M\}, j \neq k$
 - * Find hypothesis class $\mathcal{W} = \{w_1, \cdots, w_m\}$ such that $t \le \theta(w_i, w_j) \le 6.5t, \quad \forall i \ne j$
 - * ... can be done for all $t \in (0, 1/4)$, using constant weight coding

* ... can guarantee that $\log |\mathcal{W}| = \Omega(d)$

Negative Example Construction

Negative Example Construction

Lower Bound

TSYBAKOV and ZAIATS, Introduction to Nonparametric Estimation

- * Let $\mathcal{F}_0 = \{f_0, \cdots, f_M\}$ be a set of models. Suppose
 - * <u>Separation</u>: $D(f_j, f_k) \ge 2\rho, \forall j, k \in \{1, \dots, M\}, j \neq k$ * <u>Closeness</u>: $\frac{1}{M} \sum_{j=1}^{M} \operatorname{KL}(P_{f_j} \| P_{f_0}) \le \gamma \log M$ * <u>Popularity</u> $P_{\mathcal{A}} \ll P_{\mathcal{A}} \forall i \in \{1, \dots, M\}$
 - * <u>Regularity</u>: $P_{f_j} \ll P_{f_0}, \forall j \in \{1, \cdots, M\}$
- * Take $\rho = \Theta(t) = \Theta((d/T)^{(1-\alpha)/2\alpha})$ $\log M = \Theta(d)$
- * We have that $\inf_{\hat{w}} \sup_{w^*} \Pr\left[\theta(\hat{w}, w^*) \ge \frac{t}{2}\right] = \Omega(1)$

Lower Bound

* Suppose *D* has density bounded away from below and fix $\mu > 0, \alpha \in (0, 1)$. Let $\mathcal{P}_{Y|X}$ be class of distributions satisfying (μ, α) -TNC. Then we have that

$$\inf_{A} \sup_{P \in \mathcal{P}_{Y|X}} \mathbb{E}_{P}\left[\operatorname{err}(\hat{w}) - \operatorname{err}(w^{*})\right] \geq \Omega\left[\left(\frac{d}{T}\right)^{1/2\alpha}\right]$$

Extension: "Proactive" learning

- Suppose there are *m* different users (labelers) who share the same classifier *w*^{*} but with different TNC parameters *α*₁, · · · , *α*_m
- * The TNC parameters are *not* known.
- At each iteration, the algorithm picks a data point x and also a user *j*, and observes *f*(*x*;*j*)
- * The goal is to estimate the Bayes classifier w^*

Extension: "Proactive" learning

- * Algorithm framework:
 - * Operate in $E = O(\log T)$ iterations.
 - At each iteration, use conventional *Bandit* algorithms to address exploration-exploitation tradeoff
- * Key property: search space $\{\beta_k\}$ and margin $\{b_k\}$ does *not* depend on unknown TNC parameters.
- * Many interesting extensions: what if multiple labelers can be involved each time?

Thanks! Questions?