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BACKGROUND
➤ Optimization: 
➤ Classical setting (first-order): 

✴ f is known (e.g., a likelihood function or an NN objective)

✴             can be evaluated, or unbiasedly approximated.

➤ Zeroth-order setting: 
✴ f is unknown, or very complicated.

✴             is unknown, or very difficult to evaluate.

✴         can be evaluated, or unbiasedly approximated.

min
x2X

f(x)

rf(x)

rf(x)

f(x)



BACKGROUND
➤ Hyper-parameter tuning 

✴ f maps hyper-parameter    to system performance r

✴ f is essentially unknown

➤ Experimental design 
✴ f maps experimental setting (pressure, temperature, etc.) to 

synthesized material quality.

➤ Communication-efficient optimization 
✴ Data defining the objective scattered throughout machines

✴ Communicating             is expensive, but          is ok. 

✓

rf(x) f(x)



PROBLEM FORMULATION
➤ Compact domain 
➤ Objective function 

✴ f belongs to the Holder class of order

✴ f may be non-convex

➤ Query model: adaptive                            
✴  

➤ Goal: minimize 

X = [0, 1]d

f : X ! R
↵

x1, x2, · · · , xn 2 X
yt = f(xt) + ⇠t ⇠t

i.i.d.⇠ N (0, 1)

f(x̂
n

)� inf
x2X

f(x)



PROBLEM FORMULATION
➤ Compact domain 
➤ Objective function 

✴ f belongs to the Holder class of order

✴ f may be non-convex

➤ Query model: adaptive                            
✴  

➤ Goal: minimize 

X = [0, 1]d

f : X ! R
↵

x1, x2, · · · , xn 2 X
yt = f(xt) + ⇠t ⇠t

i.i.d.⇠ N (0, 1)

f(x̂
n

)� inf
x2X

f(x)



PROBLEM FORMULATION
➤ Compact domain 
➤ Objective function 

✴ f belongs to the Holder class of order

✴ f may be non-convex

➤ Query model: adaptive                            
✴  

➤ Goal: minimize 

X = [0, 1]d

f : X ! R
↵

x1, x2, · · · , xn 2 X
yt = f(xt) + ⇠t ⇠t

i.i.d.⇠ N (0, 1)

f(x̂
n

)� inf
x2X

f(x)

kf (↵)k1  M



PROBLEM FORMULATION
➤ Compact domain 
➤ Objective function 

✴ f belongs to the Holder class of order

✴ f may be non-convex

➤ Query model: adaptive                            
✴  

➤ Goal: minimize 

X = [0, 1]d

f : X ! R
↵

x1, x2, · · · , xn 2 X
yt = f(xt) + ⇠t ⇠t

i.i.d.⇠ N (0, 1)

f(x̂
n

)� inf
x2X

f(x)

kf (↵)k1  M



PROBLEM FORMULATION
➤ Compact domain 
➤ Objective function 

✴ f belongs to the Holder class of order

✴ f may be non-convex

➤ Query model: adaptive                            
✴  

➤ Goal: minimize 

X = [0, 1]d

f : X ! R
↵

x1, x2, · · · , xn 2 X
yt = f(xt) + ⇠t ⇠t

i.i.d.⇠ N (0, 1)

f(x̂
n

)� inf
x2X

f(x)

kf (↵)k1  M



PROBLEM FORMULATION
➤ Compact domain 
➤ Objective function 

✴ f belongs to the Holder class of order

✴ f may be non-convex

➤ Query model: adaptive                            
✴  

➤ Goal: minimize 

X = [0, 1]d

f : X ! R
↵

x1, x2, · · · , xn 2 X
yt = f(xt) + ⇠t ⇠t

i.i.d.⇠ N (0, 1)

f(x̂
n

)� inf
x2X

f(x)

kf (↵)k1  M

=: L(x̂n; f)



PROBLEM FORMULATION
➤ Compact domain 
➤ Objective function 

✴ f belongs to the Holder class of order

✴ f may be non-convex

➤ Query model: adaptive                            
✴  

➤ Goal: minimize 

X = [0, 1]d

f : X ! R
↵

x1, x2, · · · , xn 2 X
yt = f(xt) + ⇠t ⇠t

i.i.d.⇠ N (0, 1)

f(x̂
n

)� inf
x2X

f(x)

kf (↵)k1  M

=: L(x̂n; f)



A SIMPLE IDEA FIRST …
➤ Uniform sampling + nonparametric reconstruction
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A SIMPLE IDEA FIRST …
➤ Uniform sampling + nonparametric reconstruction 

✴ Classical Non-parametric analysis

✴ Implies optimization error: 

➤ Can we do better? 
➤ NO!

kf̂n � fk1 = eOP

⇣
n�↵/(2↵+d)

⌘

f(x̂n)� f

⇤  2kf̂n � fk1

inf
x̂n

sup
f2⌃↵(M)

E
f

[L(x̂
n

; f)] & n
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A SIMPLE IDEA FIRST …
➤ Uniform sampling + nonparametric reconstruction 

✴ Classical Non-parametric analysis

✴ Implies optimization error: 

➤ Can we do better? No! Intuitions:

kf̂n � fk1 = eOP

⇣
n�↵/(2↵+d)

⌘

f(x̂n)� f

⇤  2kf̂n � fk1

hn ⇠ n�1/(2↵+d)

h↵
n ⇠ n�↵/(2↵+d)



LOCAL RESULTS
➤ Characterize error for functions “near” a reference 

function f0 

➤ What is the error rate for f close to f0 that is … 
✴ a constant function?

✴ strongly convex?

✴ has regular level sets?

✴ …

➤ Can an algorithm achieve instance-optimal error, 
without knowing f0?



NOTATIONS
➤ Some definitions 

✴ Level set: 

✴ Distribution function: 

Lf (✏) := {x 2 X : f(x)  f

⇤ + ✏}
µf (✏) := vol(Lf (✏))

✏

Lf (✏)Lf (✏)



REGULARITY CONDITIONS
➤ Some definitions 

✴ Level set: 

✴ Distribution function:

➤ Regularity condition (A1): 
✴ # of    -radius balls needed to cover 
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⇤ + ✏}
µf (✏) := vol(Lf (✏))

� Lf (✏) ⇣ 1 + µf (✏)/�
d

Lf (✏)

Regular level-set



REGULARITY CONDITIONS
➤ Some definitions 

✴ Level set: 

✴ Distribution function:

➤ Regularity condition (A1): 
✴ # of    -radius balls needed to cover 

Lf (✏) := {x 2 X : f(x)  f

⇤ + ✏}
µf (✏) := vol(Lf (✏))

� Lf (✏) ⇣ 1 + µf (✏)/�
d

Irregular level-set
Lf (✏)



REGULARITY CONDITIONS
➤ Some definitions 

✴ Level set: 

✴ Distribution function:

➤ Regularity condition (A1): 
✴ # of    -radius balls needed to cover 

Lf (✏) := {x 2 X : f(x)  f

⇤ + ✏}
µf (✏) := vol(Lf (✏))

� Lf (✏) ⇣ 1 + µf (✏)/�
d

Irregular level-set
Lf (✏)



REGULARITY CONDITIONS
➤ Some definitions 

✴ Level set: 

✴ Distribution function:

➤ Regularity condition (A2): 
✴  

Lf (✏) := {x 2 X : f(x)  f

⇤ + ✏}
µf (✏) := vol(Lf (✏))

µf (✏ log n)  µf (✏)⇥O(log

� n)

f

✏

✏ log n

✏

µf (✏)

Regular



REGULARITY CONDITIONS
➤ Some definitions 

✴ Level set: 

✴ Distribution function:

➤ Regularity condition (A2): 
✴  

Lf (✏) := {x 2 X : f(x)  f

⇤ + ✏}
µf (✏) := vol(Lf (✏))

µf (✏ log n)  µf (✏)⇥O(log

� n)

f

✏

✏ log n

✏

µf (✏)

Irregular



LOCAL UPPER BOUND
➤ Main result on local upper bound:

THEOREM 1. Suppose regularity conditions hold. There 
exists an algorithm such that for sufficiently large n, 

sup

f2⌃↵(M)
Pr

f
[L(x̂n; f) � C"n(f) log

c
n]  1/4

where "n(f) := sup
n

✏ > 0 : ✏�(2+d/↵)µf (✏) � n
o
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LOCAL UPPER BOUND
➤ Main result on local upper bound:

THEOREM 1. Suppose regularity conditions hold. There 
exists an algorithm such that for sufficiently large n, 

sup

f2⌃↵(M)
Pr

f
[L(x̂n; f) � C"n(f) log

c
n]  1/4

where "n(f) := sup
n

✏ > 0 : ✏�(2+d/↵)µf (✏) � n
o

Adaptivity:  

The algo does not know f.

Instance dependent:  

Error rate depends on f



LOCAL UPPER BOUND
➤ Main result on local upper bound: 

➤ Example 1: polynomial growth 

THEOREM 1. Suppose regularity conditions hold. There 
exists an algorithm such that for sufficiently large n, 

sup

f2⌃↵(M)
Pr

f
[L(x̂n; f) � C"n(f) log

c
n]  1/4

where "n(f) := sup
n

✏ > 0 : ✏�(2+d/↵)µf (✏) � n
o

µf (✏) ⇣ ✏� ,� � 0

"n(f) ⇣ n�↵/(2↵+d�↵�)

n�↵/(2↵+d)Much faster than the “baseline” rate



LOCAL UPPER BOUND
➤ Main result on local upper bound: 

➤ Example 2: constant function 

THEOREM 1. Suppose regularity conditions hold. There 
exists an algorithm such that for sufficiently large n, 

sup

f2⌃↵(M)
Pr

f
[L(x̂n; f) � C"n(f) log

c
n]  1/4

where "n(f) := sup
n

✏ > 0 : ✏�(2+d/↵)µf (✏) � n
o

n�↵/(2↵+d)This is the worst case function, matching global rate

f ⌘ 0

"n(f) ⇣ n�↵/(2↵+d)



LOCAL UPPER BOUND
➤ Main result on local upper bound: 

➤ Example 3: strongly convex f: 

THEOREM 1. Suppose regularity conditions hold. There 
exists an algorithm such that for sufficiently large n, 

sup

f2⌃↵(M)
Pr

f
[L(x̂n; f) � C"n(f) log

c
n]  1/4

where "n(f) := sup
n

✏ > 0 : ✏�(2+d/↵)µf (✏) � n
o

Match the classical zeroth-order convex rate              up to log terms

µf (✏) ⇣ ✏d/2

"n(f) ⇣ n�1/2

n�1/2



LOCAL LOWER BOUND
➤ Main result on local lower bound:

THEOREM 2. Suppose f0 satisfies regularity conditions. 
Then we have

where "n(f) := sup
n

✏ > 0 : ✏�(2+d/↵)µf (✏) � n
o

inf
x̂n

sup
f2⌃↵(M),

kf�f0k1."n(f0)

E
f

[L(x̂
n

; f)] & "

n

(f0)
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LOCAL LOWER BOUND
➤ Main result on local lower bound:

THEOREM 2. Suppose f0 satisfies regularity conditions. 
Then we have

where "n(f) := sup
n

✏ > 0 : ✏�(2+d/↵)µf (✏) � n
o

inf
x̂n

sup
f2⌃↵(M),

kf�f0k1."n(f0)

E
f

[L(x̂
n

; f)] & "

n

(f0)

full knowledge of reference: 

The algo. knows f0

Local minimality: 

estimation error of f close to the reference f0



PROOF SKETCH OF UPPER BOUND
➤ Our algorithm: “successive rejection” 

✴ Step 1: uniform sampling and build confidence intervals (CI)

✴ Step 2: remove sub-optimal points
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PROOF SKETCH OF UPPER BOUND
➤ Our algorithm: “successive rejection” 

✴ Step 1: uniform sampling and build confidence intervals (CI)

✴ Step 2: remove sub-optimal points

✴ Step 3: uniform sample in the remaining points.

➤ Key observation between iterations: 

➤ An               number of iterations suffice.  

S⌧ ✓ Lf (") =) S⌧+1 ✓ Lf ("/2)

Until " ⇠ "n(f)⇥ log

c n
O(log n)



PROOF SKETCH OF LOWER BOUND
➤ Step 1: constructing “packings” on Lf0(✏n)

X = [0, 1]2

Lf0(✏n)

hn

hn ⇣ ✏1/↵n

Must identify the ball w.h.p.

Discrepancy in ball: 2✏n



PROOF SKETCH OF LOWER BOUND
➤ Step 1: constructing “packings” on Lf0(✏n)

X = [0, 1]2

Lf0(✏n)

hn

Resembles  

Bandit Pure Exploration

µ1, µ2, · · · , µH 2 R
µi = 2✏n;µ�i = 0

Identify the non-zero arm
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PROOF SKETCH OF LOWER BOUND
➤ Step 1: constructing “packings” on Lf0(✏n)

X = [0, 1]2

Lf0(✏n)

hn

Resembles  

Bandit Pure Exploration

KL(P0kPi) . ni · ✏2n
ni . n/H

# of balls packed

H & µf0(✏n)/h
d
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Regularity



TAKE-HOME MESSAGES
➤ (Noisy) zeroth-order optimization of smooth functions 

is in general difficult 
✴ As difficult as estimating the function in sup-norm.

➤ The optimal convergence rates exhibit significant gaps 
locally for different objective functions 
✴ Local minimax rate mostly dictated by level set growth;

✴ The constant function is the hardest example;

✴ Strongly convex functions do not exhibit curse of dim.

➤ A successive-rejection type algorithm is near-optimal.



FUTURE DIRECTIONS
➤ Are the regularity conditions absolutely necessary? 

✴ Can the level sets of f be irregular?

✴ Can the volumes of level sets of f grow heterogeneously?

➤ Are there more computationally efficient algorithms? 
✴ Key challenge: avoiding creating sup-norm CIs explicitly.

➤ Log factors: are they removable? (conjecture: yes!) 
✴ Active queries methods for nonparametric estimation / bandit 

pure exploration do not have log terms.



QUESTIONS


