
ZEROTH-ORDER NON-CONVEX SMOOTH OPTIMIZATION:
LOCAL MINIMAX RATES

Yining Wang, CMU
joint work with Sivaraman Balakrishnan and Aarti Singh

BACKGROUND
➤ Optimization:
➤ Classical setting (first-order):

✴ f is known (e.g., a likelihood function or an NN objective)

✴ can be evaluated, or unbiasedly approximated.

➤ Zeroth-order setting:
✴ f is unknown, or very complicated.

✴ is unknown, or very difficult to evaluate.

✴ can be evaluated, or unbiasedly approximated.

min
x2X

f(x)

rf(x)

rf(x)

f(x)

BACKGROUND
➤ Hyper-parameter tuning

✴ f maps hyper-parameter to system performance r

✴ f is essentially unknown

➤ Experimental design
✴ f maps experimental setting (pressure, temperature, etc.) to

synthesized material quality.

➤ Communication-efficient optimization
✴ Data defining the objective scattered throughout machines

✴ Communicating is expensive, but is ok.

✓

rf(x) f(x)

PROBLEM FORMULATION
➤ Compact domain
➤ Objective function

✴ f belongs to the Holder class of order

✴ f may be non-convex

➤ Query model: adaptive
✴

➤ Goal: minimize

X = [0, 1]d

f : X ! R
↵

x1, x2, · · · , xn 2 X
yt = f(xt) + ⇠t ⇠t

i.i.d.⇠ N (0, 1)

f(x̂
n

)� inf
x2X

f(x)

PROBLEM FORMULATION
➤ Compact domain
➤ Objective function

✴ f belongs to the Holder class of order

✴ f may be non-convex

➤ Query model: adaptive
✴

➤ Goal: minimize

X = [0, 1]d

f : X ! R
↵

x1, x2, · · · , xn 2 X
yt = f(xt) + ⇠t ⇠t

i.i.d.⇠ N (0, 1)

f(x̂
n

)� inf
x2X

f(x)

PROBLEM FORMULATION
➤ Compact domain
➤ Objective function

✴ f belongs to the Holder class of order

✴ f may be non-convex

➤ Query model: adaptive
✴

➤ Goal: minimize

X = [0, 1]d

f : X ! R
↵

x1, x2, · · · , xn 2 X
yt = f(xt) + ⇠t ⇠t

i.i.d.⇠ N (0, 1)

f(x̂
n

)� inf
x2X

f(x)

kf (↵)k1  M

PROBLEM FORMULATION
➤ Compact domain
➤ Objective function

✴ f belongs to the Holder class of order

✴ f may be non-convex

➤ Query model: adaptive
✴

➤ Goal: minimize

X = [0, 1]d

f : X ! R
↵

x1, x2, · · · , xn 2 X
yt = f(xt) + ⇠t ⇠t

i.i.d.⇠ N (0, 1)

f(x̂
n

)� inf
x2X

f(x)

kf (↵)k1  M

PROBLEM FORMULATION
➤ Compact domain
➤ Objective function

✴ f belongs to the Holder class of order

✴ f may be non-convex

➤ Query model: adaptive
✴

➤ Goal: minimize

X = [0, 1]d

f : X ! R
↵

x1, x2, · · · , xn 2 X
yt = f(xt) + ⇠t ⇠t

i.i.d.⇠ N (0, 1)

f(x̂
n

)� inf
x2X

f(x)

kf (↵)k1  M

PROBLEM FORMULATION
➤ Compact domain
➤ Objective function

✴ f belongs to the Holder class of order

✴ f may be non-convex

➤ Query model: adaptive
✴

➤ Goal: minimize

X = [0, 1]d

f : X ! R
↵

x1, x2, · · · , xn 2 X
yt = f(xt) + ⇠t ⇠t

i.i.d.⇠ N (0, 1)

f(x̂
n

)� inf
x2X

f(x)

kf (↵)k1  M

=: L(x̂n; f)

PROBLEM FORMULATION
➤ Compact domain
➤ Objective function

✴ f belongs to the Holder class of order

✴ f may be non-convex

➤ Query model: adaptive
✴

➤ Goal: minimize

X = [0, 1]d

f : X ! R
↵

x1, x2, · · · , xn 2 X
yt = f(xt) + ⇠t ⇠t

i.i.d.⇠ N (0, 1)

f(x̂
n

)� inf
x2X

f(x)

kf (↵)k1  M

=: L(x̂n; f)

A SIMPLE IDEA FIRST …
➤ Uniform sampling + nonparametric reconstruction

A SIMPLE IDEA FIRST …
➤ Uniform sampling + nonparametric reconstruction

A SIMPLE IDEA FIRST …
➤ Uniform sampling + nonparametric reconstruction

A SIMPLE IDEA FIRST …
➤ Uniform sampling + nonparametric reconstruction

✴ Classical Non-parametric analysis

✴ Implies optimization error:

➤ Can we do better?
➤ NO!

kf̂n � fk1 = eOP

⇣
n�↵/(2↵+d)

⌘

f(x̂n)� f

⇤  2kf̂n � fk1

inf
x̂n

sup
f2⌃↵(M)

E
f

[L(x̂
n

; f)] & n

�↵/(2↵+d)

A SIMPLE IDEA FIRST …
➤ Uniform sampling + nonparametric reconstruction

✴ Classical Non-parametric analysis

✴ Implies optimization error:

➤ Can we do better? No! Intuitions:

kf̂n � fk1 = eOP

⇣
n�↵/(2↵+d)

⌘

f(x̂n)� f

⇤  2kf̂n � fk1

hn ⇠ n�1/(2↵+d)

h↵
n ⇠ n�↵/(2↵+d)

LOCAL RESULTS
➤ Characterize error for functions “near” a reference

function f0

➤ What is the error rate for f close to f0 that is …
✴ a constant function?

✴ strongly convex?

✴ has regular level sets?

✴ …

➤ Can an algorithm achieve instance-optimal error,
without knowing f0?

NOTATIONS
➤ Some definitions

✴ Level set:

✴ Distribution function:

Lf (✏) := {x 2 X : f(x)  f

⇤ + ✏}
µf (✏) := vol(Lf (✏))

✏

Lf (✏)Lf (✏)

REGULARITY CONDITIONS
➤ Some definitions

✴ Level set:

✴ Distribution function:

➤ Regularity condition (A1):
✴ # of -radius balls needed to cover

Lf (✏) := {x 2 X : f(x)  f

⇤ + ✏}
µf (✏) := vol(Lf (✏))

� Lf (✏) ⇣ 1 + µf (✏)/�
d

Lf (✏)

Regular level-set

REGULARITY CONDITIONS
➤ Some definitions

✴ Level set:

✴ Distribution function:

➤ Regularity condition (A1):
✴ # of -radius balls needed to cover

Lf (✏) := {x 2 X : f(x)  f

⇤ + ✏}
µf (✏) := vol(Lf (✏))

� Lf (✏) ⇣ 1 + µf (✏)/�
d

Irregular level-set
Lf (✏)

REGULARITY CONDITIONS
➤ Some definitions

✴ Level set:

✴ Distribution function:

➤ Regularity condition (A1):
✴ # of -radius balls needed to cover

Lf (✏) := {x 2 X : f(x)  f

⇤ + ✏}
µf (✏) := vol(Lf (✏))

� Lf (✏) ⇣ 1 + µf (✏)/�
d

Irregular level-set
Lf (✏)

REGULARITY CONDITIONS
➤ Some definitions

✴ Level set:

✴ Distribution function:

➤ Regularity condition (A2):
✴

Lf (✏) := {x 2 X : f(x)  f

⇤ + ✏}
µf (✏) := vol(Lf (✏))

µf (✏ log n)  µf (✏)⇥O(log

� n)

f

✏

✏ log n

✏

µf (✏)

Regular

REGULARITY CONDITIONS
➤ Some definitions

✴ Level set:

✴ Distribution function:

➤ Regularity condition (A2):
✴

Lf (✏) := {x 2 X : f(x)  f

⇤ + ✏}
µf (✏) := vol(Lf (✏))

µf (✏ log n)  µf (✏)⇥O(log

� n)

f

✏

✏ log n

✏

µf (✏)

Irregular

LOCAL UPPER BOUND
➤ Main result on local upper bound:

THEOREM 1. Suppose regularity conditions hold. There
exists an algorithm such that for sufficiently large n,

sup

f2⌃↵(M)
Pr

f
[L(x̂n; f) � C"n(f) log

c
n]  1/4

where "n(f) := sup
n

✏ > 0 : ✏�(2+d/↵)µf (✏) � n
o

LOCAL UPPER BOUND
➤ Main result on local upper bound:

THEOREM 1. Suppose regularity conditions hold. There
exists an algorithm such that for sufficiently large n,

sup

f2⌃↵(M)
Pr

f
[L(x̂n; f) � C"n(f) log

c
n]  1/4

where "n(f) := sup
n

✏ > 0 : ✏�(2+d/↵)µf (✏) � n
o

LOCAL UPPER BOUND
➤ Main result on local upper bound:

THEOREM 1. Suppose regularity conditions hold. There
exists an algorithm such that for sufficiently large n,

sup

f2⌃↵(M)
Pr

f
[L(x̂n; f) � C"n(f) log

c
n]  1/4

where "n(f) := sup
n

✏ > 0 : ✏�(2+d/↵)µf (✏) � n
o

LOCAL UPPER BOUND
➤ Main result on local upper bound:

THEOREM 1. Suppose regularity conditions hold. There
exists an algorithm such that for sufficiently large n,

sup

f2⌃↵(M)
Pr

f
[L(x̂n; f) � C"n(f) log

c
n]  1/4

where "n(f) := sup
n

✏ > 0 : ✏�(2+d/↵)µf (✏) � n
o

Adaptivity:

The algo does not know f.

LOCAL UPPER BOUND
➤ Main result on local upper bound:

THEOREM 1. Suppose regularity conditions hold. There
exists an algorithm such that for sufficiently large n,

sup

f2⌃↵(M)
Pr

f
[L(x̂n; f) � C"n(f) log

c
n]  1/4

where "n(f) := sup
n

✏ > 0 : ✏�(2+d/↵)µf (✏) � n
o

Adaptivity:

The algo does not know f.

LOCAL UPPER BOUND
➤ Main result on local upper bound:

THEOREM 1. Suppose regularity conditions hold. There
exists an algorithm such that for sufficiently large n,

sup

f2⌃↵(M)
Pr

f
[L(x̂n; f) � C"n(f) log

c
n]  1/4

where "n(f) := sup
n

✏ > 0 : ✏�(2+d/↵)µf (✏) � n
o

Adaptivity:

The algo does not know f.

LOCAL UPPER BOUND
➤ Main result on local upper bound:

THEOREM 1. Suppose regularity conditions hold. There
exists an algorithm such that for sufficiently large n,

sup

f2⌃↵(M)
Pr

f
[L(x̂n; f) � C"n(f) log

c
n]  1/4

where "n(f) := sup
n

✏ > 0 : ✏�(2+d/↵)µf (✏) � n
o

Adaptivity:

The algo does not know f.

Instance dependent:

Error rate depends on f

LOCAL UPPER BOUND
➤ Main result on local upper bound:

➤ Example 1: polynomial growth

THEOREM 1. Suppose regularity conditions hold. There
exists an algorithm such that for sufficiently large n,

sup

f2⌃↵(M)
Pr

f
[L(x̂n; f) � C"n(f) log

c
n]  1/4

where "n(f) := sup
n

✏ > 0 : ✏�(2+d/↵)µf (✏) � n
o

µf (✏) ⇣ ✏� ,� � 0

"n(f) ⇣ n�↵/(2↵+d�↵�)

n�↵/(2↵+d)Much faster than the “baseline” rate

LOCAL UPPER BOUND
➤ Main result on local upper bound:

➤ Example 2: constant function

THEOREM 1. Suppose regularity conditions hold. There
exists an algorithm such that for sufficiently large n,

sup

f2⌃↵(M)
Pr

f
[L(x̂n; f) � C"n(f) log

c
n]  1/4

where "n(f) := sup
n

✏ > 0 : ✏�(2+d/↵)µf (✏) � n
o

n�↵/(2↵+d)This is the worst case function, matching global rate

f ⌘ 0

"n(f) ⇣ n�↵/(2↵+d)

LOCAL UPPER BOUND
➤ Main result on local upper bound:

➤ Example 3: strongly convex f:

THEOREM 1. Suppose regularity conditions hold. There
exists an algorithm such that for sufficiently large n,

sup

f2⌃↵(M)
Pr

f
[L(x̂n; f) � C"n(f) log

c
n]  1/4

where "n(f) := sup
n

✏ > 0 : ✏�(2+d/↵)µf (✏) � n
o

Match the classical zeroth-order convex rate up to log terms

µf (✏) ⇣ ✏d/2

"n(f) ⇣ n�1/2

n�1/2

LOCAL LOWER BOUND
➤ Main result on local lower bound:

THEOREM 2. Suppose f0 satisfies regularity conditions.
Then we have

where "n(f) := sup
n

✏ > 0 : ✏�(2+d/↵)µf (✏) � n
o

inf
x̂n

sup
f2⌃↵(M),

kf�f0k1."n(f0)

E
f

[L(x̂
n

; f)] & "

n

(f0)

LOCAL LOWER BOUND
➤ Main result on local lower bound:

THEOREM 2. Suppose f0 satisfies regularity conditions.
Then we have

where "n(f) := sup
n

✏ > 0 : ✏�(2+d/↵)µf (✏) � n
o

inf
x̂n

sup
f2⌃↵(M),

kf�f0k1."n(f0)

E
f

[L(x̂
n

; f)] & "

n

(f0)

full knowledge of reference:

The algo. knows f0

LOCAL LOWER BOUND
➤ Main result on local lower bound:

THEOREM 2. Suppose f0 satisfies regularity conditions.
Then we have

where "n(f) := sup
n

✏ > 0 : ✏�(2+d/↵)µf (✏) � n
o

inf
x̂n

sup
f2⌃↵(M),

kf�f0k1."n(f0)

E
f

[L(x̂
n

; f)] & "

n

(f0)

full knowledge of reference:

The algo. knows f0

LOCAL LOWER BOUND
➤ Main result on local lower bound:

THEOREM 2. Suppose f0 satisfies regularity conditions.
Then we have

where "n(f) := sup
n

✏ > 0 : ✏�(2+d/↵)µf (✏) � n
o

inf
x̂n

sup
f2⌃↵(M),

kf�f0k1."n(f0)

E
f

[L(x̂
n

; f)] & "

n

(f0)

full knowledge of reference:

The algo. knows f0

LOCAL LOWER BOUND
➤ Main result on local lower bound:

THEOREM 2. Suppose f0 satisfies regularity conditions.
Then we have

where "n(f) := sup
n

✏ > 0 : ✏�(2+d/↵)µf (✏) � n
o

inf
x̂n

sup
f2⌃↵(M),

kf�f0k1."n(f0)

E
f

[L(x̂
n

; f)] & "

n

(f0)

full knowledge of reference:

The algo. knows f0

LOCAL LOWER BOUND
➤ Main result on local lower bound:

THEOREM 2. Suppose f0 satisfies regularity conditions.
Then we have

where "n(f) := sup
n

✏ > 0 : ✏�(2+d/↵)µf (✏) � n
o

inf
x̂n

sup
f2⌃↵(M),

kf�f0k1."n(f0)

E
f

[L(x̂
n

; f)] & "

n

(f0)

full knowledge of reference:

The algo. knows f0

LOCAL LOWER BOUND
➤ Main result on local lower bound:

THEOREM 2. Suppose f0 satisfies regularity conditions.
Then we have

where "n(f) := sup
n

✏ > 0 : ✏�(2+d/↵)µf (✏) � n
o

inf
x̂n

sup
f2⌃↵(M),

kf�f0k1."n(f0)

E
f

[L(x̂
n

; f)] & "

n

(f0)

full knowledge of reference:

The algo. knows f0

Local minimality:

estimation error of f close to the reference f0

PROOF SKETCH OF UPPER BOUND
➤ Our algorithm: “successive rejection”

✴ Step 1: uniform sampling and build confidence intervals (CI)

✴ Step 2: remove sub-optimal points

✴ Step 3: uniform sample in the remaining points.

PROOF SKETCH OF UPPER BOUND
➤ Our algorithm: “successive rejection”

✴ Step 1: uniform sampling and build confidence intervals (CI)

✴ Step 2: remove sub-optimal points

✴ Step 3: uniform sample in the remaining points.

S1

PROOF SKETCH OF UPPER BOUND
➤ Our algorithm: “successive rejection”

✴ Step 1: uniform sampling and build confidence intervals (CI)

✴ Step 2: remove sub-optimal points

✴ Step 3: uniform sample in the remaining points.

S1

PROOF SKETCH OF UPPER BOUND
➤ Our algorithm: “successive rejection”

✴ Step 1: uniform sampling and build confidence intervals (CI)

✴ Step 2: remove sub-optimal points

✴ Step 3: uniform sample in the remaining points.

S1

PROOF SKETCH OF UPPER BOUND
➤ Our algorithm: “successive rejection”

✴ Step 1: uniform sampling and build confidence intervals (CI)

✴ Step 2: remove sub-optimal points

✴ Step 3: uniform sample in the remaining points.

➤ Key observation between iterations:

➤ An number of iterations suffice.

S⌧ ✓ Lf (") =) S⌧+1 ✓ Lf ("/2)

Until " ⇠ "n(f)⇥ log

c n
O(log n)

PROOF SKETCH OF LOWER BOUND
➤ Step 1: constructing “packings” on Lf0(✏n)

X = [0, 1]2

Lf0(✏n)

hn

hn ⇣ ✏1/↵n

Must identify the ball w.h.p.

Discrepancy in ball: 2✏n

PROOF SKETCH OF LOWER BOUND
➤ Step 1: constructing “packings” on Lf0(✏n)

X = [0, 1]2

Lf0(✏n)

hn

Resembles

Bandit Pure Exploration

µ1, µ2, · · · , µH 2 R
µi = 2✏n;µ�i = 0

Identify the non-zero arm

PROOF SKETCH OF LOWER BOUND
➤ Step 1: constructing “packings” on Lf0(✏n)

X = [0, 1]2

Lf0(✏n)

hn

Resembles

Bandit Pure Exploration

KL(P0kPi) . ni · ✏2n
ni . n/H

H & µf0(✏n)/h
d
n

PROOF SKETCH OF LOWER BOUND
➤ Step 1: constructing “packings” on Lf0(✏n)

X = [0, 1]2

Lf0(✏n)

hn

Resembles

Bandit Pure Exploration

KL(P0kPi) . ni · ✏2n
ni . n/H

of balls packed

H & µf0(✏n)/h
d
n

PROOF SKETCH OF LOWER BOUND
➤ Step 1: constructing “packings” on Lf0(✏n)

X = [0, 1]2

Lf0(✏n)

hn

Resembles

Bandit Pure Exploration

KL(P0kPi) . ni · ✏2n
ni . n/H

of balls packed

H & µf0(✏n)/h
d
n

PROOF SKETCH OF LOWER BOUND
➤ Step 1: constructing “packings” on Lf0(✏n)

X = [0, 1]2

Lf0(✏n)

hn

Resembles

Bandit Pure Exploration

KL(P0kPi) . ni · ✏2n
ni . n/H

of balls packed

H & µf0(✏n)/h
d
n

Regularity

TAKE-HOME MESSAGES
➤ (Noisy) zeroth-order optimization of smooth functions

is in general difficult
✴ As difficult as estimating the function in sup-norm.

➤ The optimal convergence rates exhibit significant gaps
locally for different objective functions
✴ Local minimax rate mostly dictated by level set growth;

✴ The constant function is the hardest example;

✴ Strongly convex functions do not exhibit curse of dim.

➤ A successive-rejection type algorithm is near-optimal.

FUTURE DIRECTIONS
➤ Are the regularity conditions absolutely necessary?

✴ Can the level sets of f be irregular?

✴ Can the volumes of level sets of f grow heterogeneously?

➤ Are there more computationally efficient algorithms?
✴ Key challenge: avoiding creating sup-norm CIs explicitly.

➤ Log factors: are they removable? (conjecture: yes!)
✴ Active queries methods for nonparametric estimation / bandit

pure exploration do not have log terms.

QUESTIONS

