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Abstract—Ideally, the throughput of a Multipath TCP
(MPTCP) connection should be as high as that of multiple disjoint
single-path TCP flows. In reality, the throughput of MPTCP is
far lower than expected. In this paper, we conduct an extensive
simulation-based study on this phenomenon and the results
indicate that a subflow experiencing high delay and loss severely
affects the performance of other subflows, thus becoming the
bottleneck of the MPTCP connection and significantly degrading
the aggregate goodput. To tackle this problem, we propose
Fountain code-based Multipath TCP (FMTCP), which effectively
mitigates the negative impact of the heterogeneity of different
paths. FMTCP takes advantage of the random nature of the
fountain code to flexibly transmit encoded symbols from the same
or different data blocks over different subflows. Moreover, we
design a data allocation algorithm based on the expected packet
arriving time and decoding demand to coordinate the transmis-
sions of different subflows. Quantitative analyses are provided to
show the benefit of FMTCP. We also evaluate the performance of
FMTCP through ns-2 simulations and demonstrate that FMTCP
outperforms IETF-MPTCP, a typical MPTCP approach, when
the paths have diverse loss and delay in terms of higher total
goodput, lower delay and jitter. In addition, FMTCP achieves
high stability under abrupt changes of path quality.

Index Terms—Multipath TCP, rateless coding, Fountain Code,
scheduling.

I. INTRODUCTION

Currently, the majority of data transmissions go through
TCP. In a network with high loss and delay, such as a wireless
network, the performance of TCP degrades significantly due
to frequent retransmissions of lost or erroneous packets. In
addition, a user may want to transmit data at a higher aggregate
throughput when having multiple access links to the network.
However, conventional TCP cannot enjoy the multihoming
feature.

In order to solve these problems, Multipath TCP (MPTCP)
[1][2][3] has been proposed to transmit TCP simultaneously
over multiple paths to improve its goodput and reliability.
When all the paths are good, subflows can transmit as usual
and the goodput of MPTCP is high as expected. However,
if the paths have high diversity in quality (i.e., with different
loss or delay), the goodput of MPTCP degrades sharply. When
a receiver waits for a packet sent on a low-quality path, the
receiver buffer may be filled up. Thus even if other paths have
good quality, they can’t send more packets, and the low-quality
paths become the bottlenecks of MPTCP. Some studies [1][4]
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show that the goodput of MPTCP can be even worse than that
of an ordinary TCP in some cases. In Section III, we provide
some performance studies to further illustrate the problems.

To solve the bottleneck problem, some attempts [5][6] have
been made to improve the throughput over lossy networks.
However, if a large number of packets need to be retransmitted
due to the high loss rate, it would incur a high overhead to
schedule packet retransmissions. It is also very difficult to
coordinate transmissions among all paths.

The fundamental problem associated with path diversity lies
in the slow transmission on low quality paths. The retrans-
mission, however, cannot address this problem and may even
exacerbate the problem. Alternatively, if the transmissions can
be made more reliable, it would help to alleviate the above
problems. Instead of simply relying on TCP retransmissions,
in this paper, we propose a Fountain code-based Multipath
Transport Control Protocol (FMTCP) where we introduce
fountain code into MPTCP to improve the throughput and
reduce the bottleneck impact due to path heterogeneity.

Fountain code [7] is a linear random code for channels with
erasures, and its elemental data unit is symbol formed with
a certain number of bits. An encoding symbol is generated
based on random linear combination of the source symbols in a
data block. With its low complexity and redundancy, different
fountain codes are considered for use in different transmission
standards. The most advanced version of a practical fountain
code has been standardized in IETF RFC6330 [8] to provide
reliable delivery of data objects. As a key advantage, the
original data can be encoded into an arbitrary number of
symbols based on the transmission quality and the estimated
number of symbols to use for data recovery. The receiver can
recover the original data with high accuracy after obtaining
enough number of the encoded symbols.

Taking advantage of fountain codes, a sender in FMTCP
generates new encoded symbols for a block based on the
remaining number of symbols needed for reliable decoding
at the receiver. Instead of retransmitting the lost packets
along the same path on which packet loss is detected, new
symbols from the same or different blocks are put into one
or multiple packets. Packets are flexibly allocated to different
TCP subflows for transmissions based on the packet arrival
time estimated according to the transmission quality of each
flow, as a result the low-quality paths will no longer be the
bottlenecks of the overall multi-path TCP transmission. As
only randomly generated symbols are needed for decoding,
there is no need for FMTCP to coordinate transmissions on
different paths, which not only significantly reduces the com-
plexity of scheduling but also reduces the gap in transmission
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time on diverse paths. This will in turn significantly improve
the TCP performance. We provide quantitative analysis of
our scheduling algorithm and derive an upper bound of the
ratio of transmission time on diverse paths. The simulation
results demonstrate that FMTCP achieves much higher and
more stable performance than the IETF standardized MPTCP
(IETF-MPTCP).

Another issue in designing a transport-layer protocol is fair-
ness, i.e. whether it is TCP-friendly. TCP-friendliness mainly
focuses on the behaviors when different flows share a common
bottleneck link. There are several papers focusing on the
congestion control algorithm of multipath transfer protocols
[1][9][10][11]. However, the definition of fairness for multi-
path transmission protocols is still disputable. Becke et al. [12]
investigate the existing congestion control approaches and try
to extend the definition of fairness from single-path transport
to multi-path transport. In this paper, we mainly focus on
packet encoding and data allocation and our framework can
adopt any congestion control mechanisms in the work men-
tioned above. Moreover, as we only use disjoint paths in the
simulations, the selection of congestion control mechanisms
would not influence the results.

The rest of the paper is organized as follows. We discuss the
related work in Section II, and study the limitation of existing
MPTCP approaches through simulations in Section III. Then
we present our FMTCP design and data allocation algorithm
along with quantitative performance analysis in Sections IV
and V, respectively. Finally, we evaluate the performance of
the proposed FMTCP in Section VI and conclude the work in
Section VII.

II. RELATED WORK

In a network with high loss and/or delay, such as wireless
networks, conventional TCP suffers from performance degra-
dation due to frequent retransmissions and reordering. Some
solutions [13][14] optimize congestion control to compensate
for the performance degradation caused by packet loss. Other
efforts [15][16][17] have been made to introduce network
coding into TCP over wireless networks. Huang et al. [15]
show that network coding helped reduce packet loss proba-
bility and decrease the retransmissions, thus improving the
throughput. Sundararajan et al. propose a scheme to combine
random linear network coding with TCP [17]. Compared to the
literature work, FMTCP employs coding mechanisms which
fundamentally avoids retransmissions and reduces reordering
without influencing the fairness of transmission.

Many efforts have been made to explore use of multiple
interfaces on a portable device simultaneously to improve the
goodput and stability of transmissions [3][9][18][19][20][21].
The studies indicate that transmissions over multiple paths can
improve the transmission capacity and quality. An existing
multipath transport protocol which supports multi-streaming
and multi-homing is SCTP (Stream Control Transmission
Protocol) [22]. However, in the basic SCTP design, other paths
are only considered as the backups of a primary path and
Concurrent Multipath Transfer (CMT) is not supported. CMT-
SCTP [9] extends SCTP by adding CMT support, which is in

the process of IETF standardization. Raiciu et al. attempt to
design and implement a deployable multipath TCP which is
backward-compatible with TCP. They evaluate the behaviors
of various middleboxes in relation to TCP extensions through
a large number of Internet measurements [23]. Based on
the observations, they propose architectural guidelines [24]
and extension mechanisms [2][4] for Multipath TCP develop-
ment. Their TCP extension for multipath operation has been
standardized in [3], and we denote it as IETF-MPTCP to
differentiate it from general MPTCP schemes. IETF-MPTCP
has been used to save mobile energy [25], improve datacenter
performance [26], provide opportunistic mobility [27] etc.
However, as mentioned earlier and studied in Section III, poor
paths can significantly impact the performance of Multipath
TCP and become the bottleneck. We focus on this performance
degradation problem and propose FMTCP based on those
schemes above.

The path diversity problem is a common issue in multi-path
transport protocols. Iyengar et al. [28] indicate that in CMT-
SCTP the low-quality paths degrade the overall throughput be-
cause the limited receive buffer blocks the transmission, which
is consistent with our observations for MPTCP. Dreibholz et al.
[29] try to address this problem by scheduling. They compare
different stream scheduling policies and prove that mapping
streams to a specific path performs better than round-robin
scheduling. This work aims for multi-streaming and provides
no guidance for transmitting a single stream over paths with
quality diversity. The authors also analyze the buffer blocking
problem in [30] and propose to split the buffer among paths
to tackle this problem. However, the splitting of the overall
buffer into equal-size segments for all paths may waste buffer
spaces on low-quality paths. Also, although it may work for
disordered transmissions, a large buffer would still be needed
to support ordered transmissions commonly ensured by TCP.

The authors of IETF-MPTCP propose to retransmit the
first unacknowledged packet on subflows being blocked and
penalize subflows that cause buffer blocking by halving the
congestion window in [4]. Although the two schemes are
simple and help to mitigate the buffer blocking problem, they
are only triggered after the buffer blocking occurs and re-
transmissions are still needed which would impact the overall
performance. In addition, the cross-path retransmission and the
window reduction of the inferior path will waste the capacity
of both types of path. What’s more, even if buffer blocking
issues are mitigated, the problems associated with the diversity
in path qualities remain, which will be further explained in
Section III. In contrast, we propose a novel mechanism which
exploits rateless coding and path-quality aware transmission
scheduling to improve the performance of MPTCP in lossy
and heterogeneous networks. Our proposed scheme avoids the
need of retransmitting lost packets and largely reduces the
reordering, which in turn avoid buffer blocking and reduce
the buffer delay.

Network Coding has also been considered to improve the
performance of multipath TCP in MPLOT [31] and HMT-
P [32]. MPLOT [31] takes advantage of current diverse paths
to improve the goodput of wireless mesh networks and reduce
packet recovery latency. It uses a fixed-rate coding scheme,



3

A B

B2

B1

A2

A1

Path 1

Path 2

Sender Receiver

Fig. 1: Simulation topology

1 2 3 4 5 6 7 8
0

500

1000

1500

2000

2500

Test Case

T
hr

ou
gh

pu
t(

kb
ps

)

 

 
2TCP−64KB*2
MPTCP−256KB
MPTCP−128KB
MPTCP−64KB

Fig. 2: Goodput comparison between IETF-MPTCP and 2-TCP

which does not have good performance when the path quality
decreases sharply. Moreover, the scheduling scheme is too
simple and could not support the variation of transmission
quality from different networks. In our paper, we take a step
further by introducing a practical rateless code into Multipath
TCP, and design a novel data allocation algorithm. Similar
to our solution, HMTP [32] also takes advantage of Fountain
Code. However, in HMTP, the sender continues encoding and
sending packets until the receiver completes decoding and
sends a stop message. This stop-and-wait mechanism is ob-
viously inefficient and possibly generates transmission redun-
dancy. We address this issue by introducing a prediction-based
mechanism in scheduling the number of encoded symbols, and
further optimizing the data allocation among different subflows
based on the estimation of path quality.

III. THE LIMITATION OF MPTCP
Before presenting our proposed FMTCP scheme, we first

provide some analysis on the limitation of MPTCP through
simulation studies using ns-2 on a typical multipath TCP
protocol, IETF-MPTCP [2].

Generally, MPTCP contains several subflows with each
subflow performing TCP transmission separately. In our simu-
lation, we employ a topology with two nodes connected by two
disjoint paths, as shown in Fig. 1, in which the term ”disjoint”
means that the link parameters (e.g. bandwidth, delay, loss
rate, etc.) of two paths are independent from each other. One
of the paths has fixed quality and the other one has its QoS
parameters varied based on different simulation settings. To
evaluate the performance of IETF-MPTCP, we compare the
performance of one IETF-MPTCP flow between two nodes
with that of two independent TCP flows transmitting over the
two paths.

In Fig. 2, we set up the subflow 1 with 100ms delay and
0.1% packet loss, while varying the loss rate and delay of the
subflow 2 based on the parameters in Table I. The buffer size of
each TCP flow is set to the default value, 64KB, and we study
the throughput of IETF-MPTCP under several different buffer
sizes. We can observe that the goodput of IETF-MPTCP is

TABLE I: Path parameters of subflow 2
Test Case 1 2 3 4 5 6 7 8

Delay (ms) 100 100 100 100 100 200 300 500
Loss Rate (%) 2 5 20 50 1 1 1 1

always lower than that of two independent TCP flows, denoted
as ”2-TCP” in the figure.

When the buffer size is 64KB, the total goodput of IETF-
MPTCP is much lower than that of two independent TCP
flows, and the difference increases as the quality of subflow 2
gets worse. In Test Cases 1 to 5, as the loss rate of subflow 2
varies from 1% to 50%, the goodput decreases up to 65.6%.
As IETF-MPTCP needs to aggregate the packets from two
subflows at the receiver and sends them to the application layer
in order, the loss from one subflow will impact the overall
goodput of IETF-MPTCP. In Test Case 5 to 8, as the delay
of subflow 2 varies from 100 ms to 500 ms, we observe a
59.7% goodput reduction. When the buffer size gets larger, the
throughput gets more close to that of 2-TCP. But in extreme
scenarios where there are large losses or delays such as test
cases 4 and 8, MPTCP still experiences 38.8% and 45.7%
goodput reduction respectively even when the buffer size is
256KB.

These results are mainly caused by the heterogeneity in
quality of paths over which different subflows go through.
MPTCP uses a connection level receive buffer where packets
are stored until they are ready to be delivered to application
layer sequentially, and lost packets from a subflow are general-
ly retransmitted through the same subflow. Assuming the very
first packet in the receiving window happens to be transmitted
via an inferior subflow and has not been successfully received
yet. When the receiver buffer is full, other subflows cannot
send packets and are thus blocked by the inferior subflow.
Therefore, the existence of inferior flows limits the total
goodput. The higher the loss rate is, the more severe the
blocking problem will be.

One possible solution is to simply enlarge the receiver buffer
size. We first analyze the minimum receiver buffer size needed.
When a packet loss occurs, the receiver has to buffer data
from all subflows for the duration of the fast retransmission
which would double the maximum round trip time 2RTTmax

if the loss is on the slowest path. In a setup of n paths with
bandwidth BWi and RTT RTTi of path Pi, the minimum
buffer size Bmin for the sender as well as for the receiver
buffer [24] is

Bmin = 2 ∗
n∑

i=1

BWi ∗ max
1≤i≤n

RTTi. (1)

The worst-case scenario would be when the subflow with
the highest RTT/RTO (Round-Trip Time or Retransmission
TimeOut) experiences a timeout. In this case, the minimum
buffer size Bmin to avoid stalling will be

Bmin =
n∑

i=1

BWi ∗ ( max
1≤i≤n

RTTi + max
1≤i≤n

RTOi). (2)

The bandwidth of IEEE 802.11a is 54Mbps, and the rate
can be 300Mbps and even higher in IEEE 802.11g and future
standards. With the default minimum RTO being 200ms in
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Linux, the minimum buffer size Bmin can be more than
100MB which is costly, and the cost would be very high
when there are more transmission flows. In IETF-MPTCP,
the suggested sender or receiver buffer size is calculated as
Eq. (1), which may still be very expensive when paths with
high bandwidth work together with applications that have high
delay. On the other hand, as we have shown in our example
above, even when the buffer size is large enough, the overall
performance may still be constrained by inferior flows. All
the packets will be aggregated at the receiver and submitted
to the application layer sequentially. Therefore, even if other
subflows can send in the packets, they cannot be passed to
the application layer in time if some earlier packets from the
inferior flows have not arrived. This will introduce a large
end-to-end delay and jitter as will be seen in the simulation
section.

Note that although IETF-MPTCP attempts to be TCP-
friendly so it would not be more aggressive than a single-path
TCP, it is not the key reason for the performance degradation in
our simulation setting. TCP-friendliness mainly focuses on the
behaviors when different subflows share a common bottleneck
link. In fact, even if each subflow of IETF-MPTCP follows
the conventional TCP congestion control mechanism, it still
suffers from the bottleneck problem caused by subflows with
lower path quality as long as packets transmitted on different
subflows need to be aggregated into an in-order byte stream
before transmitting to the upper layer.

IV. FMTCP DESIGN

Since the degradation of transmission quality of individ-
ual subflows could significantly impact the total goodput of
MPTCP, we propose to introduce fountain code to improve
the transmission quality. Compared to a fixed-rate coding
scheme, the rateless fountain code has the benefit of changing
the coding rate on the fly based on the receiving quality
while introducing very low overhead. In this section, we first
introduce the basic architecture of our proposed FMTCP, and
then present our reasoning of code selection in FMTCP.

A. Architecture of FMTCP

The sender side architecture of FMTCP is illustrated in
Fig. 3. We introduce the fountain code into the transport layer
and transmit encoded data via multiple paths. A byte stream
from applications is divided into blocks, which are taken as
the input of the encoding module inserted on top of the data
allocation module. After the encoding, each block is converted
to a series of encoded symbols, which are carried in packets
and transmitted to the receiver.

On the receiver side, encoded symbols are converted back to
the original data through a decoding module appended on top
of the data aggregation module. Once decoded, the data can
be transmitted to the application layer, and the corresponding
symbols can be removed from the receiving buffer.

Upon a subflow gets a transmission opportunity, the sender
needs to generate encoded symbols from the pending blocks
and combine these symbols into a packet for the subflow.
A receiver will extract encoded symbols from packets and
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Symbols
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Fig. 3: FMTCP Sender Architecture

aggregate the symbols from different subflows. If the received
symbols are enough to recover a block, these symbols can be
sent to the decoding module.

The main challenges are to determine the number of sym-
bols to transmit for a block and which subflows the symbols of
a block should be assigned to in order to improve the goodput.
If the receiver has obtained enough information to recover a
block, it is redundant to send more symbols for that block.
On the other hand, if the received symbols of a block are
inadequate to be decoded, they would occupy the receiving
buffer and further influence the receiving of latter blocks. We
will handle this issue in later sections.

We design our FMTCP based on the architectural guidelines
for Multipath TCP development [24] and adopt the IETF-
MPTCP stack [3] to support transport layer coding as well as
provide smart data scheduling among multiple subflows. IETF-
MPTCP provides the same interface as TCP to the application
and manages multiple TCP subflows below it. It consists of
four functions: path management, packet scheduling, subflow
(single-path TCP) interface and congestion control.

We focus on the packet scheduling part which breaks the
byte stream received from the application into segments to
transmit on different available subflows. Before transmission,
the coding module encodes the segment and the data allocation
module will determine which subflow the segment will be
assigned to based on the path quality estimation. FMTCP
inherits the other functions of MPTCP. All MPTCP operations
are signaled using optional TCP header fields, so does our
FMTCP. To support coding, we can design a new MPTCP
option in place of the Data Sequence Signal (DSS) option in
MPTCP [3], where an 8-bit source block number and a 24-bit
encoding symbol ID are used according to RFC6330 [8] to
identify the data in the packet instead of the data sequence
number used in MPTCP.

Another issue in designing and implementing a deploy-
able multipath TCP is to support middleboxes. Operations
performed by middleboxes in the Internet can be generally
categorized as NAT, sequence number rewriting, removing
TCP options, segment splitting, segment coalescing, payload
modification and pro-active acking [4] [23].

The main difference between the packet coding of FMTCP
and IETF-MPTCP is that FMTCP uses block number and
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symbol ID instead of data sequence number in IETF-MPTCP.
FMTCP can perform as well as IETF-MPTCP when dealing
with NATs and middleboxes that rewrite sequence numbers,
and for removing TCP options or modifying the payload.
Segment splitting won’t be a problem either, as FMTCP can
use block number to do data sequence mapping in a way
similar to MPTCP and avoid duplicate mappings caused by
segment splitting. Segment coalescing would keep only one
DSS option due to the limited option space, and thus induce
data loss in both MPTCP and FMTCP.

Middleboxes with pro-active acking are mainly TCP proxies
that cache the original segment and resend it when retrans-
mission is needed. We retransmit new data in FMTCP. If
the original packet and the retransmission are from the same
data block, it doesn’t matter which one arrives. Otherwise, it
may lead to some wrong estimation of the remaining symbols
needed. At this time we can use acknowledgement to estimate
the number of symbols sent for corresponding blocks, at the
cost of possibly higher redundancy and delay.

B. Code Selection for FMTCP

Since we are transmitting data via different paths and these
paths may have very different quality, it is possible that
the low-quality paths block the high-quality ones, causing
increasing transmission delay and low goodputs. Therefore, we
introduce Forward Error Correction(FEC) code for channels
with erasures into the transport layer to alleviate this problem.
Here FEC is not used to correct bit errors but to recover data in
lost packets which will be introduced later. In this way, even if
packets are lost on some low-quality paths, the receiver may
still be able to recover the original data and thus the low-
quality paths will not block the high-quality ones. There are
basically two categories of FEC codes: fixed-rate and rateless.

For a fixed-rate code, a block containing kb symbols is
encoded into k̂b encoded symbols where k̂b/kb is the coding
rate. It is guaranteed that any kb of the k̂b encoded symbols
can recover the original file. Therefore, the receiver can
successfully decode the data if the number of symbols lost
is no larger than k̂b − kb. Otherwise, the sender is forced
to retransmit some packets, which may happen if the loss
rate is underestimated. This coding scheme works well on
channels whose loss rate does not change rapidly. However, in
a practical scenario, the loss rate of channels may vary over a
large range. This would make a fixed-rate coding scheme no
longer suitable, since it is hard to alter the coding rate (i.e. the
number of encoded symbols generated for one block) during
the course of data transmissions.

To solve the problem of fixed-rate coding, rateless coding
scheme is introduced. In rateless coding, an arbitrarily number
of symbols can be generated for a block. If the receiver
doesn’t receive enough number of symbols due to dynamics
of the channels, additional new symbols can be generated to
form a lower-rate encoding instead of retransmitting the lost
ones. Therefore rateless coding has no fixed rate and its rate
adapts between 1 and 0. This feature is also referred as the
prefix property [33] as an encoding with a higher rate can
be considered as a prefix of any lower-rate encoding. With

Block b 1 0 1

0 0 1

1 1 0

1 1 1

0 1 0 2r

3r

1 2r rÅ

1 3r rÅ

1 2 3r r rÅ Å

1c

n
c

2c

3c

4c

5c

1r

2r

3r

1g

1 2 3n n n
g g g

n
g

Encoded

Symbols
Generator

Matrix

Original

Data

2g

3g

Fig. 4: Rateless Coding

rateless codes, we can adapt the rate according to the dynamics
of the channels to improve the throughput of different paths.

In our FMTCP, we use a special kind of rateless codes,
called Fountain Codes [7], which is based on random linear
coding as illustrated in Fig. 4. In the coding process, a data
block is divided into k̂b equal length source symbols {ρ1, ρ2,
· · · , ρk̂b

} each of which has xb bits. At each time instant n,
the sender will generate a k̂b-bit random vector (gnk). The
corresponding encoded symbol cn is then set to bitwise sum
(modulo 2) of the source symbols for which gnk is 1 by Eq.(3).
The encoded symbol is also xb bits. The number of 1 in a
random vector is called degree dn. By randomly generating
(gnk)s which form a n-by-k̂b generator matrix, the sender can
produce new symbols whenever needed.

cn = (

k̂b∑
k=1

ρk · gnk) mod 2 (3)

The symbols are put into packets and transferred through
different paths. Each packet carries the random vector or a
key based on which the decoder can generate the random
vector using the same random number generator in the header.
The receiver could get the k̂b-bit vector (gnk) of the encoded
symbols along with the received packets. When the receiver
gets k̂b linear independent random vectors which form a k̂b-
by-k̂b invertible (modulo 2) matrix Gn, the original data can
be decoded.

In our earlier work [34], the simplest fountain code called
random linear fountain code is used for simulation. In random
linear codes, as the random vectors are completely randomly
generated, the average degree is k̂b/2 and the encoding and
decoding complexity is O((k̂b)

2) which has a high com-
putational cost. In [35], Luby Transform Codes(LT Codes)
was introduced to reduce the density of the generator matrix
by carefully designing the degree distribution ρ(d) which
represents the probability of degree d ranging from 1 to k̂b. As
shown in [7], the average degree of encoded symbols needs to
be at least ln(k̂b) in order to recover all the original symbols
at a low redundancy level and this is achieved with LT Code.
The encoding and decoding complexity of LT Code reduces
to O(k̂b ln(k̂b)).

In this paper, we adapt a more practical fountain code
called Raptor Code[36] which further extends LT Code and
reduces the encoding and decoding complexity to O(k̂b). It
combines the feature of rateless code and fix-rate code to
achieve a good performance by concatenating a weakened
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LT code with an outer code. More specifically, the internal
code is an LT code with the average degree constrained to a
constant value about 3. The weakened LT code is not enough
to recover the entire source symbols but can recover most of
them (i.e. 95%). To achieve a higher recovery rate, Raptor
Code adds a fix-rate outer code. Shokrollahi [36] uses an
irregular Low-Density Parity-Check code (LDPC) [37] [38]
which can correct erasures at a known rate of 5% with a low
decoding complexity for the outer code.

In Raptor Codes, a block containing kb symbols is first
encoded into k̂b symbols using LDPC code where k̂b is
slightly larger than kb. Next the k̂b encoded symbols are
further encoded into kb symbols using LT code. The number
of encoded symbols, kb, is arbitrary and can change according
to the dynamics of the channel. If the receiver has received k̂b
encoded symbols of LT code, the receiver is able to recover
at least kb symbols at a very high possibility, which can be
further decoded into the original data according to the nature
of fix-rate coding. Note that the value of k̂b depends only on
the nature of LT code, not the dynamics of the channel.

Raptor Codes have been standardized to provide reliable
delivery of data objects in RFC5053 [39] which has been
further extended in RFC6330 [8]. In most cases, any set of
encoding symbols with the cardinality equal to the number
of source symbols are sufficient to recover the source block;
in rare cases, a slightly larger number of encoding symbols
are required. A Source Block Number(SBN) and an Encoding
Symbol ID(ESI) of a symbol are enough for the receiver to
recover the original data. The symbol size ranges from 1 to
65535 bytes and a wide range of block sizes (number of
symbols) between 10 and 56403 are also supported [8]. The
symbol size and block size are constant for a block and can
be negotiated between the sender and the receiver to achieve
better efficiency.

In determining the size of a block which is the product of
the symbol size xb and the number of symbols kb in a block,
several constraints should be considered:

• Maximum segment size: Similar to TCP, FMTCP also
employs the maximum segment size, MSS, to limit the
size of a packet. The total size of the encoded symbols
in a packet should be smaller than MSS to avoid the
fragmentation of packets.

• Buffer size: Since all symbols of a block should be
buffered until the block is decoded, the size of a block
should be no more than the buffer size of the receiver.

• End-to-end delay: As data are delivered to the application
by block, the end-to-end delay for applications grows
with the increase of the block size.

When the data size from the application is small, we can
choose a small symbol size and block size. Addition to that,
additional padding symbols can be used as introduced in [8],
which don’t need to be actually sent. Similarly, if a source
block cannot be divided into kb equal-length symbols, some
padding bits are added to the last source symbol, which does
not need to be included in the packet either.

V. DATA ALLOCATION

In FMTCP, data allocation is needed to choose symbols
from proper data blocks to generate a sending packet for the
subflow requesting for packets. Both the number of encoded
symbols generated for a block and the distribution of each
subflow should be considered to improve the performance.
In the following section, we first discuss the objectives and
constraints of data allocation. We then provide a scheme to
determine the redundancy level thus the additional number
of symbols to send in a block to ensure more timely data
transmissions. Finally, we present a data allocation algorithm.

A. An Analysis on Data Allocation

We use F to represent the set of all the subflows. Each
subflow f maintains its congestion window size ŵf and the
retransmission timeout RTOf . We denote pf and RTTf as the
statistic loss probability and round trip time of the subflow f
respectively.

Intuitively, to improve the efficiency of FMTCP, data allo-
cation is expected to achieve the following objectives.

• Low Redundancy: In order to increase the goodput, the
sender should not transmit redundant encoded symbols to
receiver once the receiver can recover the original block.

• Decoding In Order: In order to ensure the delivery order,
if a block bi is sent before a block bi+1, bi should be
recovered by the receiver before bi+1. This is because
only by recovering the first pending block can the receiver
release its buffer in time and thus avoid the restriction on
the aggregation data rate caused by the flow control.

• High Decoding Probability: In order to reduce the de-
livery delay for a block, the receiver should be able to
recover the original data with a high probability. If the
receiver is not able to recover the data, it needs to inform
the sender to send more encoded symbols of the block,
which will increase the delivery delay for the block and
make the protocol not suitable for real-time applications.

However, it is very hard to achieve all the objectives
mentioned above at the same time. For instance, in order to
ensure that the receiver has a high probability of successful
decoding, the sender should send more redundant data on a
lossy channel, which conflicts with the first objective which
forbids sending redundant data to save bandwidth. In order to
ensure the delivery order the sender should wait for all ACKs
of a block bi before sending symbols of the block bi+1, which
is inefficient because of the stop-and-wait manner.

To handle these problems, we should set more practical
objectives for FMTCP. First, instead of forbidding the sender
from sending redundant data, the sender is allowed to send
some redundant data on lossy channels as long as it can help
significantly reduce the delivery delay of a block. Second, the
sender should not work in a stop-and-wait manner. Once a
block is completed, the sender should directly move on to the
next block no matter whether all the ACKs of the last block
have been received. FMTCP also employs a data allocation
algorithm to adjust the order of arrival for different blocks.
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To represent the quality for a receiver to recover a block b
once some symbols of b are sent, we employ the following
definition of completeness of a block.

Definition 1. A block b is complete if and only if the number
of symbols received for b equals k̂b; otherwise, the block is
pending.

The completeness of a block means that the receiver can
recover the block with a very high probability. From the
previous section we known that k̂b encoding symbols are
sufficient to recover the source block. By the first objective of
the data allocation scheme, the sender should not send more
symbols once a block becomes complete.

However, in reality it is impractical to assume all paths
are reliable, therefore, the sender should send more than k̂b
symbols to ensure a high decoding probability. Intuitively, one
might suggest the sender sends k̂b/(1−p) symbols, assuming
the loss rate of paths is p, as this would make the expected
number of successfully-delivered symbols equal k̂b. But this is
not actually the case, because in most cases the sender cannot
send all symbols of a block in one burst. Usually the sender
waits for the ACK of previously sent symbols and then decide
how many more symbols should be sent for the block. This
behavior makes k̂b/(1 − p) a pessimistic estimation and thus
wastes the bandwidth.

To determine the number of appending symbols (i.e. the
amount of redundant data sent for a block), we need to further
analyze the behavior of TCP congestion control when a packet
loss is detected. We model TCP congestion control in a way
similar to [40].

TCP opens window and sends new packets upon receipt
of an ACK that acknowledges new data. During continuous
transmissions of data, most symbols lost will be detected
by 3 duplicate ACKs after a round trip time and then be
supplemented. For delay-tolerant applications, the block size
can be set much larger than the congestion window size of
lossy channels to achieve a higher goodput and symbols of
a block would be sent during several round-trip time. Under
this condition, symbols lost except those sent during the last
round-trip time can be detected and supplemented in time.
As symbols of the same block are mutually independent and
without order, the lost symbols won’t cause reordering and do
little harm to our transmission of the whole block. So we only
need to append extra packets for symbols sent during the last
round trip time which will be no more than the congestion
window size. To achieve the minimum transferring delay, the
block size can be set to be smaller than the congestion window
size. In either case, we could consider the loss to be within the
expected congestion window size. Therefore, we calculate the
number of appending packets based on the congestion window
size ŵf instead of the block size k̂b.

We first give definition of δ-completeness of a block as
follows.

Definition 2. A block b is δ-complete if and only if the
decoding failure probability of b, δb, is no more than δ.

Note that the reason for decoding failure is not the nature
of Raptor codes, but due to the random loss of packets on the

channel.
We also employ maximum acceptable decoding failure

probability, denoted by δ̂, as the threshold to predict whether
a block can be successfully decoded by the receiver. If a block
b is δ̂-complete, the receiver is expected to be able to decode
it and thus the sender can stop sending symbols for b. For
the estimation of decoding failure probability, we have the
following theorem.

Theorem 1. If lb extra packets are sent for block b, the
probability of decoding failure can be computed using Eq.4.

δb(lb) =
∑
j>lb

(
ŵf + lb

j

)
pjf (1− pf )

ŵf+lb−j . (4)

Proof: When lb extra packets are appended for block b,
the decoder can get no less than k̂b packets which is sufficient
for decoding successfully if no more than lb packets out of
ŵf + lb ones are lost.

Supposing the number of lost packets within ŵf is j, then
the probability of losing j packets is

P = pjf (1− pf )
ŵf+lb−j (5)

Considering all combination of any j packets out of ŵf + lb
packets, the probability that the number of lost packets is j is

P (j) =

(
ŵf + lb

j

)
pjf (1− pf )

ŵf+lb−j (6)

When more than j packets are lost, the decoding would fail
and extra packets are needed for transmission. By adding the
probability of all cases in which j > lb, we get Eq.4 which
represents the decoding failure probability. So the proof is
completed.

In order to ensure the block has the maximum acceptable
decoding failure probability δ̂ and reduce the redundance, the
value of lb should be set to the smallest integer, l∗b , such that
δb(lb) is no more than δ̂.

rf =
k̂b + lb
kb

. (7)

The redundancy (i.e. the overhead of the coding scheme),
rf , is given using Eq. (7). The redundancy consists of both
coding redundancy and extra packets appended on lossy chan-
nels. It is a measurement of the waste of bandwidth. We should
make rf as small as possible while reducing delivery delay at
the same time.

B. Data Allocation Algorithm

An intuitive approach of data allocation is to assign encoded
symbols in a greedy manner, i.e., transmit the first pending
block until its expected failure probability gets lower than the
acceptable failure threshold and then handle the next block.

Although this approach is able to meet the above re-
quirements in a single-path transmission, it will not work
efficiently for transmissions through multiple heterogeneous
paths. For example, if the delay of the pending flow is very
large compared with other flows, it would be unreasonable
to assign the symbols of the first pending block to it. Thus,
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(a) wf = 0

(b) wf > 0

Fig. 5: EAT evaluation

the performance of data allocation would be improved by
predicting the transmission time of the subflows.

Definition 3. The Expected Delivery Time (EDT ) for a path
f is defined as the expected time to send a packet successfully
to the other end, using only path f .

The EDT of flow f with loss rate pf , one-way delivery
time DTf , round trip time RTTf and retransmission timeout
RTOf can be estimated as

EDTf =
∞∑
j=0

pjf (1− pf )jRTOf +DTf =
pfRTOf

1− pf
+DTf

(8)
Here we used RTTf/2 to approximately estimate DTf for
simplicity.

Definition 4. When a packet is sent on a path f , the time
elapsed before it is acknowledged or its timer expires is defined
as the Response Time (RT ).

When a packet is sent, if it arrives successfully, RT equals
RTT; otherwise, RT equals RTO. Thus, we can compute the
expected RT of subflow f according to the Eq. (9), where pf
is the loss rate of f .

RTf = (1− pf )RTTf + pfRTOf . (9)

Definition 5. After a packet arrives at the transport layer
and is scheduled for transmission, the time elapsed before the
allocated packet is successfully delivered to the other end on
subflow f is defined as The Expected Arriving Time (EAT )
of the subflow f .

The EAT of subflow f can be calculated based on two
cases. If the congestion window is not full, EATf equals
EDTf . Otherwise, EATf consists of EDTf and RTf , besides
it should subtract τf (time elapsed since the first unacknowl-
edged packet was sent). Thus, the EAT of subflow f can be
expressed as Eq. (10), which is also illustrated in Fig. 5. Here
wf represents the remaining window space.

EATf =

{
EDTf if wf > 0
EDTf +RTf − τf otherwise . (10)

When some subflows request to send packets, EAT is
applied to compare the transmission time of all subflows, and

determine which subflows to allocate symbols to.
Based on the definition of EDT and EAT , we design a

data allocation algorithm as depicted in Algorithm 1. Blocks
that can be simultaneously transmitted on the fly are called
the pending blocks, denoted as a set B = {b1, b2, . . . , bn}.
The number of pending blocks n is the maximum number of
blocks which can be stored in the receive buffer at the same
time. The symbol size of block bi is denoted as x̂bi . A subflow
with remaining window space to send data is identified as
the pending flow fp when it requests for a packet. Instead
of fetching the earliest data in the buffer which hasn’t been
sent, Algorithm 1 is triggered to decide which symbols to
send in the packet. The output vector V = {v1, v2, . . . , vn}
describes the data contents inside the allocated packet, in
which vi denotes the number of symbols from block bi. Then
the corresponding symbols are generated by the coding module
and sent on subflow fp in a packet.

To achieve the objectives of data allocation in the algorithm,
the flow with the smallest EAT is virtually assigned to a
packet (i.e., not really assigned the packet, and this process is
only applied to facilitate scheduling) in each iteration until the
pending flow is assigned a packet for transmission. After each
iteration, the EAT of the corresponding subflow is virtually
updated. The packet description vector for fp is taken as the
output of the algorithm to guide the packet construction and
only the packet allocated to fp is physically generated. Thus
when a loss is detected on a flow, the lost symbol(s) will be
supplemented on the fastest flow which has the smallest EAT .

The allocation is virtual for subflows except fp, as it is
not necessary to physically generate symbols and update the
EAT for other subflows. When one of these subflows has the
transmission opportunity later, it will trigger the allocation
algorithm and be assigned the symbols from the same or
different blocks if the EAT change makes the allocation result
different.

Virtual allocation tries to get data received in order (in
granularity of blocks). It uses an expected delivery time (EDT)
to evaluate the overall performance of a subflow based on
delay and loss rate, and further estimates the expected arriving
time (EAT) of packets sent on a subflow by combining the state
of the sending window. The appending subflow would send
data from the appending blocks in the appropriate position
instead of always the first pending block. With coding, packets
within a data block are mutually independent from each other
and can be transmitted out of order without having to wait
until earlier packets have arrived. So the very first block won’t
occupy the receiving buffer too long to block the transferring
of following blocks. The lost data can be also be recovered in
time as the most urgent packet will be sent on the subflow with
the smallest EAT which is expected to deliver the packet in the
shortest time. Virtual allocation can thus help make better use
of transmission capacity of all subflows without their blocking
of transmissions from each other.

Our algorithm has good tolerance for RTT measurement
inaccuracies and variations by adapting the transmissions
accordingly. Subflows with similar qualities have the same
priority in transmissions (i.e. their order won’t affect the
performance). Virtual allocation will work properly as long
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as the inaccuracy of RTT measurement is smaller than the
difference in the subflow quality.

Algorithm 1 AllocatePacket(fp, F,B)

Input: the pending subflow fp; the set of subflows F ; the set
of pending blocks B = {b1, b2, . . . , bn}, and the RT , τ
for each subflow;

Output: the description vector V for the packet to send;
1: repeat
2: f ← argming∈FEATg

3: X ← 0
4: s← 0
5: i← 0
6: while (i < n)and(s ≤ MSSf ) do
7: i← i+ 1
8: vi ← 0
9: while (δ̃bi ≥ δ̂)and(s ≤ MSSf ) do

10: vi ← vi + 1
11: s← s+ x̂bi

12: end while
13: end while
14: EATf ← EDTf +RTf − τf
15: until f = fp
16: return V

C. Performance Analysis of the Data Allocation Scheme

In this section, we provide analysis to show that our data
allocation scheme helps to reduce side effects due to low-
quality transmission paths and path diversity, which will in
turn improve the overall transmission quality of multi-path
TCP. We use rf , Rf to denote the round-trip time and RTO
of a subflow f respectively.

First we want to show that symbols lost on a subflow will
not be appended on a subflow with a lower quality. Thus,
FMTCP will not be blocked by frequent loss on low-quality
subflows. More specifically, we have the following theorem.

Theorem 2. If EDTi < EDTj , then symbols lost on the
subflow i will not be appended on the subflow j.

Proof: When a subflow i requests to append symbols for a
data block, its congestion window has space. Based on Eq. 10,
EATi = EDTi < EDTj ≤ EATj , thus this symbol will
not be immediately appended on subflow j. If the appended
symbols were not transmitted on subflow i, then there exists
a subflow k with EATk < EATi, where

EATk = EDTk +RTk − τk < EATj . (11)

Note that Eq. (11) remains valid until either subflow j or
subflow k is updated with a packet transmission. Therefore,
those appended symbols will not be transmitted on subflow j.

Next we want to show that the EDT used in the data
allocation algorithm can reflect the actual path quality to some
extent. we define Expected Delivery Time of Packet (PEDT )
to estimate the transmission time of a packet.

Definition 6. When a packet is generated and scheduled for
transmission, the expected time needed to successfully transmit
the packet is defined as the Expected Delivery Time of Packet
(PEDT ) of the packet.

PEDT reflects the expectation of the time needed to
successfully transmit a packet in MPTCP which contains
retransmission on the original path in IETF-MPTCP and
supplement on the best path in our FMTCP. So PEDTf

equals EDTf in IETF-MPTCP but is no larger than EDTf

in FMTCP.

Theorem 3. If EDTi < EDTj then PEDTi < PEDTj .

Proof: We use induction to prove this theorem. If there
is only one path, then the theorem is obviously correct. We
assume the theorem is correct for n paths. Next we want to
prove the theorem is also correct for n+ 1 paths.

Without the loss of generality, assume

EDT1 < EDT2 < · · · < EDTn+1.

Using the induction hypothesis on subflow 2 to n + 1, we
have the following inequality.

PEDT2 < PEDT3 < · · · < PEDTn+1. (12)

Since EDT1 < EDT2, according to Theorem 2, symbols
lost on subflow 1 will only be appended on subflow 1 while
symbols lost on subflow 2 may be appended on either subflow
2 or subflow 1. Thus PEDT1 = EDT1. When symbols lost
on subflow 2 is appended on subflow 2, PEDT2 = EDT2.
When symbols lost on subflow 2 is appended on subflow 1,
PEDT2 is

PEDT2 = (1− p2)
r2
2

+ p2(R2 + EDT1)

= (1− p2)(
r2
2

+
p2R2

1− p2
) + p2EDT1

= (1− p2)EDT2 + p2EDT1.

In both cases we can see PEDT2 > EDT1, therefore

PEDT1 < PEDT2. (13)

Combine Eq. (12) and Eq. (13) we complete the proof.
Theorem 3 shows that EDT is a proper estimation on the

quality of subflows in FMTCP.
Finally, we give an analysis to show that the allocation

scheme of FMTCP helps to reduce the time difference of
symbols transmitted on different flows, which further reduces
the disorder of packet arrival. Our FMTCP’s advantage over
conventional multipath TCP increases as the diversity of path
grows.

We assume there are two subflows. The round-trip time and
loss rate of the two paths are r1, p1, r2, p2 respectively. We
also assume r1 ≈ R1, r2 ≈ R2, where R1, R2 are RTO of
both subflows. Without the loss of generality, we assume that
flow 2 is the inferior flow. More precisely, EDT2/EDT1 = m
and m > 1. m represents the diversity of paths.

Lemma 1. If Eq. (14) is satisfied, then symbols lost on subflow
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2 will only be appended on subflow 1.

m >
3− p1
1 + p1

(14)

Proof: Using Eq.8 and supposing that r2 ≈ R2, we can
estimate EDT2 with Eq.15.

EDT2 =
p2R2

1− p2
+

r2
2
≈ 1 + p2

2(1− p2)
r2. (15)

With Eq.10, EAT1 can be bounded as follows.

EAT1 ≤ EDT1 +RT1 − τ1

≤ EDT1 +R1

≈ EDT2

m
+ r1.

So if Eq. (14) is satisfied we can deduce that

EAT1 < EDT2

which means the symbols lost on subflow 2 will only be
transmitted on subflow 1.

Theorem 4. Let T1, T2 denote the time elapsed before the
receiver successfully receives one symbol from a block, which
is initially transmitted on subflow 1 and subflow 2 respectively.
Then the ratio of E(T2) and E(T1) is bounded as Eq. (16)
when Eq. (14) is satisfied.

E(T2)

E(T1)
≤ p2

3− p1
1 + p1

+ (1− p2)m. (16)

Proof: E(T2) can be bounded as Eq. (17).

E(T2) = (1− p2)
r2
2

+ p2(R2 + E(T1) + E(RT1 − τ1))

≤ (1− p2)
r2
2

+ p2(R2 + E(T1) +R1). (17)

Using Eq.15, we can estimate m as follows.

m = EDT2/EDT1 ≈
(1 + p2)(1− p1)r2
(1 + p1)(1− p2)r1

.

Plug E(T1) = EDT1 = PEDT1 and m into Eq. (17) we
get

E(T2)

E(T1)
≤ p2

3− p1
1 + p1

+ (1− p2)m

In IETF-MPTCP, a packet will continuously be transmitted
over the same subflow until it is successfully received, so the
ratio is exactly m. When Eq. (14) is not satisfied, the ratio
of FMTCP is not larger than MPTCP. Otherwise, the ratio
of FMTCP is bounded as Eq. (16) which is smaller than m.
Therefore, as the diversity of path (m) grows, FMTCP shows
its advantage over the conventional multipath TCP.

VI. SIMULATION RESULTS

In this section, we evaluate our FMTCP solution through ns-
2 simulations. In our simulation, we employ a topology with
two nodes connecting with each other through two disjoint
paths as the same in Section III.

We first conduct a series of experiments to determine the
packet appending rate. Then we study the impact of buffer size
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Fig. 6: The average number of lost packets on the fly for one block.
Loss rate of one flow is constant(0.1% packet loss) while the loss
rate of the other flow changes according to the legend.

and compare the overall performance of FMTCP with that of
IETF-MPTCP [24]. Finally, we make further analysis on the
effect of rateless coding and scheduling separately.

The metrics we take to evaluate the performance include
goodput, delivery delay and jitter. Note that the delivery delay
of each packet is not a good metric to evaluate the performance
of FMTCP because the receiver cannot decode with the data
from a single packet. What’s more, the transfer delay on
the path just reflects the quality of the transmission links
while the performance of transmission protocols should be
evaluated though continuous transmission of some amount of
data. Therefore, we measure the delay by block and define the
delivery delay of a block as the duration from the transmission
of its first encoded symbol to the time when the block is
decoded successfully by the receiver and ready to be handed
to the application layer. The jitter is also measured by the
block. For a fair comparison, we partition the data streams
transmitted by IETF-MPTCP into blocks of the same length
as that of FMTCP and measure the delay and jitter accordingly.

A. Appending Packets

As explained earlier, it is crucial to estimate the number of
packets lost when transmitting a block in order to determine
the number of packets needed to append for each block (i.e.
the redundancy in transmission) according to the loss rate of
the paths. If the redundancy is too small, the receiver cannot
recover the original block with a high probability and the
delivery delay for a block increases. If the redundancy is too
large, the bandwidth is wasted and the total goodput decreases.
In Eq. (4) we give a formula to estimate the probability of the
decoder being unable to recover the original block, given the
number of appending packets for block b, lb, and the loss
rate of paths, pf . In this section, we use simulation to display
the number of lost packets when transmitting a block under
different loss rates.

We record the number of lost packets of blocks and present
the cumulative distribution (i.e. the percentage of blocks which
lose no more than x packets) in Fig. 6. In the implementation
of the protocol, we set the value of δ̂ to be 5%. In this setting,
using Eq. (4), and δb(l

∗
b ) < δ̂ we obtain that l∗b = 1 for loss

rate from 1% to 5% and l∗b = 2 for loss rate 10%. This result
is consistent with Fig. 6, where we observe that when the loss
rate of the path 2 is not larger than 5%, putting lb = 1 we
can obtain δb(lb) smaller than δ̂. However, when the loss rate
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Fig. 7: Average delivery delay and goodput under different appending
rate settings. The parameters of the subflow 1 remain the same
(100ms delay, 0.1% packet loss). The path delay of subflow 2 is
100ms while the loss rate changes according to the legend.

increases to 10%, we need to set lb to 2 in order to ensure the
failure probability of delivery is smaller than δ̂.

We then study the impact of different appending rates of
a block on the average delivery delay of blocks and the
goodput in FMTCP. If the rate is low, the receiver will not
be able to recover the original block in most cases. Therefore,
the sender should resend symbols and the delivery delay is
large. However, if the appending rate is large, the bandwidth
will be wasted because the sender sends a large number of
redundant packets and the goodput will reduce. From Fig. 7(a)
we can see that when the appending rate is small, the average
delivery delay decreases sharply as we increase the appending
rate. However, when the appending rate is large, the average
delivery delay remains almost the same despite we increase
the appending rate. Fig. 7(b) shows the goodput of FMTCP
under different appending rates. For each loss rate, the goodput
first increases with the appending rate and reaches a peak
point, beyond which the goodput will reduce as the number
of appending packets increases further. The optimal appending
rate corresponding to the maximum goodput increases as the
loss rate increases.

In practice, we need to choose the proper appending rate
under different path loss rates. As introduced earlier in Section
V, a possible choice of appending rate is l∗b , which is the
smallest integer such that δ(l∗b ) < δ̂, where δ̂ is the maximum
acceptable decoding failure probability. In the implementation
we set δ̂ to be 5%, which is reasonable because Fig. 7(a)
shows that when lb is larger than 2, the average delivery delay
remains almost unchanged while the goodput decreases as we
increase the appending rate.

B. Buffer Size

In the following sections, we employ the same methodology
as in Section III, i.e., to simulate the heterogeneity of different
subflows by adjusting the quality of one path, while keeping
the parameters of the other one constant.

As explained in Section III, in a network with heterogeneous
quality of links, packets lost on inferior flows (with higher loss
rate or delay) may block the transmissions in good paths which
consequently significantly degrades the aggregate goodput of
the multipath connection. The impact on goodput is more
severe when the buffer size is limited. To store all incoming
packets on all subflows of the same connection during the
retransmission or timeout period of the subflow with the largest

10
−3

10
−2

10
−1

0

1000

2000

3000

4000

5000

Loss rate

G
oo

dp
ut

(k
bp

s)

 

 
FMTCP 256KB
MPTCP 256KB
FMTCP 128KB
MPTCP 128KB
FMTCP 64KB
MPTCP 64KB
FMTCP 32KB
MPTCP 32KB

(a) Delay2 = 100ms

10
−3

10
−2

10
−1

0

500

1000

1500

2000

2500

3000

3500

4000

Loss rate

G
oo

dp
ut

(k
bp

s)

 

 
FMTCP 256KB
MPTCP 256KB
FMTCP 128KB
MPTCP 128KB
FMTCP 64KB
MPTCP 64KB
FMTCP 32KB
MPTCP 32KB

(b) Delay2 = 300ms

Fig. 8: The total goodput of FMTCP and MPTCP under various
buffer limitations. The parameters of the subflow 1 remain the same
(100ms delay, 0.1% packet loss). The delay of the subflow 2 is set
to 100ms/300ms and the loss rate is between 0.1% and 10%.

RTT, the minimum buffer size needed may be large according
to Eq.1 and 2. We introduce Fountain Codes to reduce the
reordering and avoid waiting for urgent packets which need
to be retransmitted over the original path with the highest
RTT/RTO as observed in IETF-MPTCP.

We present the goodput of FMTCP and IETF-MPTCP under
different buffer sizes in Fig.8. To set the block size 32KB,
we keep the buffer size no less than 32KB. We can see
that FMTCP can work well with much smaller buffer size.
When the buffer size is slightly bigger than the expected
congestion window size, it is enough for FMTCP to achieve
as high goodput as IETF-MPTCP with a large buffer size.
From Fig.9, we can see that the delay of FMTCP doesn’t
increase while the delay of IETF-MPTCP increases sharply
as the receiving buffer limit goes down. When path delays of
subflows are comparable as the cases in Fig.8(a), MPTCP can
achieve as good performance as FMTCP and even better if
the buffer size is large enough and the loss rates are small.
But in reality multipath TCP would need to handle various
and varying transmission qualities from different networks
especially wireless networks. So FMTCP can be useful in
many scenarios.

When the buffer size is extremely small, the goodput of
IETF-MPTCP and FMTCP are rather low even when the
loss rate is very small. This is because the buffer size is
even smaller than the expected congestion window size and
the window size becomes the main restriction of the actual
achieved bandwidth instead of the loss rate. When delay of
subflow 2 is 300ms, the goodput of FMTCP is even smaller
than IETF-MPTCP under some conditions. When the block
size is set equal to the buffer size, new blocks cannot be sent
until the last block can be decoded. In this scenario, delay of
a block may be smaller as shown in Fig.9, but as it works in
a stop-and-wait model, the total goodput decreases. Even so,
when the loss rate gets bigger, FMTCP performs better than
IETF-MPTCP and we can see that the total goodput of FMTCP
is not affected much by the limitation on the receiving buffer
while the total goodput of IETF-MPTCP degrades significantly
as the receiving buffer limit goes down especially when the
diversity of delay among subflows is distinct such as in Fig.
8(b).

C. Goodput, Delay and Jitter Comparison
To study the impact of path diversity, we set the delay of

subflow 1 to 100ms and packet loss to 0.1%, while varying
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Fig. 10: Goodput comparison be-
tween FMTCP and IETF-MPTCP
with the variation of subflow 2.
The parameters of the subflow 1
remain the same (100ms delay,
0.1% packet loss). The delay and
loss rate of the subflow 2 are
shown in Table II.

the loss rate and delay of subflows 2 according to Table II.
The buffer size is set to 128KB under all these conditions.

In Fig.10, we observe that FMTCP outperforms IETF-
MPTCP in all cases even when the buffer size is 128KB.
When the difference of either delay or loss rate of the two
paths increases, the goodput difference between FMTCP and
IETF-MPTCP also becomes larger. For instance, when the loss
rate of subflows 2 varies from 1% to 50% in Test Cases 1 to
5, the goodput of IETF-MPTCP has up to 57.9% degradation
while the goodput of FMTCP only decreases slightly. When
the delay of subflows 2 varies from 100ms to 500ms in Test
Case 5 to 8, FMTCP also significantly outperforms IETF-
MPTCP.

The high degradation of IETF-MPTCP indicates that the
performance of high-quality subflows is seriously influenced
by the low-quality ones under IETF-MPTCP scheme. As the
delay and loss rates go up, the low-quality subflows become
the bottleneck of IETF-MPTCP and the total goodput is
reduced.

Fig. 8(a) and Fig. 8(b) give more detailed pictures to show
how the total goodput varies when the loss rate of the subflow
2 increases. We observe that the total goodput of FMTCP
reduces only slightly, while the goodput of MPTCP has a sharp
reduction as the lost rate goes up.

There are two main reasons for FMTCP to outperform
the conventional IETF-MPTCP. First, when some packets are
lost, IETF-MPTCP subflows have to retransmit lost packets. If
some necessary packets have not arrived, other subflows must
stop and wait for them. However, FMTCP only needs to ap-
pend some new symbols of that block instead of retransmitting
the lost symbols and all the symbols sent after it. Therefore,
transmissions from inferior subflows will not block those from
good ones and the total goodput is improved. Second, FMTCP
employs a data-allocation algorithm which predicts the ar-
riving order of different symbols. The scheduling algorithm
helps to reduce the disorder of packets which are transmitted
on different paths. Besides, the scheduling algorithm together
with the redundant coding scheme helps to alleviate the effect

TABLE II: Path parameters of subflow 2
Test Case 1 2 3 4 5 6 7 8

Delay (ms) 100 100 100 100 100 200 300 500
Loss Rate (%) 2 5 20 50 1 1 1 1
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Fig. 11: Comparison between FMTCP and IETF-MPTCP. The loss
rate of the subflow 2 surges to p at 50s and returns to 1% at 200s.
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Fig. 12: The average delivery delay and jitter of blocks of FMTCP
and IETF-MPTCP. The parameters of the subflow 1 remain the same
(100ms delay, 0.1% packet loss). The delay and loss rate of the
subflow 2 are shown in Table II.

as a result of the inferior subflows blocking the good ones. In
Fig. 8(a) and Fig. 8(b) the quality of the inferior subflow does
not have much impact on the total goodput.

We further study the stability of the goodput, by using
a connection with two subflows for both IETF-MPTCP and
FMTCP. The loss rate of subflow 2 varys over time thus the
performance of FMTCP under bursty packet losses is studied
here. In Fig. 11, the delay of both paths is set to 100ms. The
initial loss rate of both paths is 1%. At 50 seconds, the loss
rate of the subflow 2 surges to 35%. At 200 seconds, the loss
rate of subflow 2 returns to 1%.

We observe that IETF-MPTCP also performs worse than
FMTCP when the quality of subflows changes rapidly. The
total goodput rate of IETF-MPTCP fluctuates severely under
the loss surge of subflow 2. However, FMTCP can adapt to
this variation well and the goodput rate is much more stable.

We then study the delivery delay and jitter of FMTCP,
which are used to measure the efficiency and stability. These
metrics are especially important for applications such as real-
time multimedia transmissions.

Fig. 12(a) shows the average delivery delay of the blocks
of FMTCP and IETF-MPTCP in different scenarios. It is clear
that the blocks transmitted with IETF-MPTCP experience
higher delivery delays than those transmitted by FMTCP.
When the difference of either delay or loss rate of the two
paths increases, the delay of a block increases sharply in IETF-
MPTCP but only changes slightly in FMTCP. This is because
FMTCP, with its data allocation mechanism, is able to send
the most urgent packets as soon as possible. In other words,
if the receiver needs more symbols to decode the very first
pending block, FMTCP would transmit the required symbols
via the path with the lowest EAT which reduces the waiting
time for decoding the block. Therefore, the delivery delay of
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legend.

a block is reduced. Particularly, when the path quality falls,
the delivery delay of IETF-MPTCP grows considerably as the
impact of those low-quality subflows is amplified.

We also investigate the jitter of the blocks of the two
protocols and the results are in Fig. 12(b). The difference
in jitter performance is even larger than that of the delay
difference, especially when the quality of one subflow is
very low. The reason is similar to the delay comparison
case. FMTCP can assign the urgent packets to the high-
quality subflow while IETF-MPTCP does not consider the
path quality. More specifically, assigning an urgent packet to
different subflows leads to different delivery delay and the
gap become larger as the quality of one flow gets lower.
FMTCP always try to send the packets through the high-
quality subflow so the delivery delay remains stable; IETF-
MPTCP does not have this feature and therefore the delivery
delay varies according to the path selected.

We make a more detailed examination of the results through
another simulation. Fig. 13 shows the delivery delay over time
where the loss rate of subflow 2 is high (10%). We can see
an extremely high fluctuations on the curve of IETF-MPTCP,
with the highest delivery delay five times that of the average
value, while the delay of FMTCP is much more stable. Clearly,
those high delay bursts are caused by the large loss rate of
the subflow 2. Because IETF-MPTCP cannot avoid allocating
urgent packets to the subflow 2, it often suffers from the high
delivery delay, which eventually increases its jitter.

D. The Performance Impact of Rateless Coding and Schedul-
ing

To further understand the different impacts on performance
due to rateless coding and our scheduling algorithm, we run
the simulation with and without scheduling and compare their
performance.

Fig. 14(a) shows the goodput of FMTCP with the scheduling
on and off. When the delay of the subflows is equal, i.e., at
100 ms, the goodput of FMTCP with scheduling on and off
is roughly the same at different loss rates, which indicates
that scheduling will not play the major role when there is no
difference in subpath delay. This can be further proved when
the delay of the path 2 is 300 ms which is different from
that of path 1, in which case FMTCP scheduling is observed
to effectively increase the throughput. From the performance
results, rateless coding can help mitigate the problems due to
packet losses and reduce the impact of inferior subflows on the
overall multi-path TCP performance as we mentioned before,
but it cannot make full use of different paths when they have
very different delay. Our scheduling algorithm further helps
reduce the block delay to achieve a higher goodput. Instead
of sending data in order, our scheduling attempts to make
data received on different paths in order. Due to the Additive
Increase Multiplicative Decrease (AIMD) feature of loss-based
TCP congestion algorithm, the average window size as well
as the throughput of subflows decrease sharply as the loss rate
increases. When the loss rate of subflow 2 is over 10%, the
low goodput of TCP makes the goodput gain from scheduling
small.

We further study the block delay with results shown in
Fig. 14(b). When the path delay difference increases, the block
delay of FMTCP with scheduling is obviously lower than
that without scheduling as expected, which demonstrates the
effectiveness of our scheduling algorithm in improving the
transmission quality in the presence of path delay difference.

VII. CONCLUSION

In this paper, we propose FMTCP, an extension to TCP,
to support efficient TCP transmissions in multi-interface net-
works. We employ fountain code to encode transmission data
and take advantage of its random coding scheme to avoid
retransmissions in MPTCP. Taking advantage of the features
of fountain code, we propose an allocation algorithm to
flexibly allocate encoded symbols to different subflows based
on the expected packet arrival time over different paths. Both
theoretical analysis and simulation results demonstrate that
FMTCP alleviates the bottleneck problem due to the quality
diversity of multiple paths and outperforms MPTCP in various
scenarios. In addition, FMTCP has stable performance when
there is a burst of packet loss. The low transmission delay
and jitter of using FMTCP help to better support multimedia
transportation and other types of real-time applications.
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