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COLUMN SUBSET SELECTION

Interpretable low-rank approximation (compared to PCA)

Applications:

Unsupervised feature selection

Image compression

Genetic analysis: target SNP selection, etc.

Challenges:

Exact column subset selection is NP-hard
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ALGORITHMS

Deterministic Algorithms

Rank-revealing QR (RRQR) [Chan, 87]

Most accurate, but expensive: 

Sampling based algorithms,slightly inaccurate, but cheap:

Norm sampling [Frieze et. al., 04]

Leverage score sampling [Drineas et. al., 08]

Iterative norm sampling (approximate volume sampling) [Deshpand & Vempala, 06]

O(n3)

O(n2k)
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NORM SAMPLING

The algorithm:

1. Compute column norms 

2. Sample each column with probability

Time complexity: 

Error analysis:

kM(i)k2

pi / kM(i)k22

O(n2)

kM � CC†Mk2F  kM �Mkk2F +O(k/s) · kMk2F

“Additive error”
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LEVERAGE SCORE SAMPLING

The algorithm:

1. Top-k truncated SVD:

2. Leverage score sampling: 

Time complexity:

Error analysis: assuming 

M = Uk⌃kV
>
k + U�k⌃�kV

>
�k

pi / kUkeik22

O(n2k)

s = ⌦(k2/✏2)

kM � CC†MkF  (1 + ✏)kM �MkkF

“Relative error”
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ITERATIVE NORM SAMPLING

Initialize C=0. Repeat until s columns are selected:

1. Compute residue: 

2. Residue norm sampling:  

Time complexity:

Error analysis:

ri = M(i) � CC†M(i)

pi / krik22

O(n2s)

Ec

⇥
kM � CC†Mk2F

⇤
 (k + 1)!kM �Mkk2F

“Multiplicative error”
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QUESTION

Three different algorithms

Norm sampling: 

Leverage score sampling:

Iterative norm sampling:

Which one works best in practice?

kM � CC†Mk2F  kM �Mkk2F + ✏kMk2F

kM � CC†Mk2F  (1 + ✏)kM �Mkk2F

kM � CC†Mk2F  (k + 1)!kM �Mkk2F

8



EXPERIMENTS

Synthetic data:

Generate an n x k random Gaussian matrix A

Set M = AAT , then normalize so that M has unit F norm

Coherent design: pick a random column in M, enlarge its norm 
by 10 times and repeat the same column five times.

Noise corruption: impose entrywise zero-mean noise on the 
normalized matrix M.
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EXPERIMENTS

Low-rank input, coherent design
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EXPERIMENTS

Full-rank input, coherent design
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EXPERIMENTS

Computational efficiency
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EXPERIMENTS

Human genetic data: Hapmap Phase II
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CONCLUSION

Iterative norm sampling performs much better than leverage 
score sampling in practice, which is not predicted by existing 
theoretical results.

Iterative norm sampling is also computationally cheaper then 
leverage score sampling, which requires truncated SVD.

Calls for improved analysis of iterative norm sampling!
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