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COPHIMBNSUBSEESEFECTICON

Interpretable low-rank approximation (compared to PCA)
Applications:

Unsupervised feature selection

Image compression

Genetic analysis: target SNP selection, etc.
Challenges:

Exact column subset selection is NP-hard



ALGOREHMS

Deterministic Algorithms
Rank-revealing QR (RRQR) [Chan, 87]
Most accurate, but expensive: O(n?)
Sampling based algorithms,slightly inaccurate, but cheap: O(n?k)
Norm sampling [Frieze et.al., 04]
Leverage score sampling [Drineas et.al., 08]

Iterative norm sampling (approximate volume sampling) [Deshpand & Vempala, 06]
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NORM SAMPLING

The algorithm:

Compute column norms ||M ;||

Sample each column with probability p; o | M) |3
Time complexity: O(n?)

Error analysis:

| M — CCTM||% < | M — M7 + O(k/s) - ||M][%



CEVERAGE SCUIRE SAMPLING

The algorithm:
Top-k truncated SYD: M = UkEkaT e U_kE_kV_Tk
Leverage score sampling: p; X 1ULe; |3

Time complexity: O(an)

Error analysis: assuming s = Q(k?/€%)

|M - CCTM||r <A+ €)M — M|z



[ TERATIVE NORM SAMPLING

Initialize C=0. Repeat until s columns are selected:
Compute residue: 7; = M5 — CCTM ;)
Residue norm sampling: p; X Hﬁ”%

Time complexity: O(n?s)

Error analysis:

2 [|M — CCTM|)%] < ((k+ DM — M7




QUESTION

Three different algorithms
Norm sampling: |M — CCTM||% < | M — M||% + €||M||%
@ Leverage score sampling: |M — CCTM||% < (1 + €)||M — My||%

lterative norm sampling: ||M — CCTM||% < (k+ Y| M — M ||%

Which one works best in practice!?



EXEERIIENEE S

Synthetic data:
Generate an n X k random Gaussian matrix A
Set M = AAT  then normalize so that M has unit F norm

Coherent design: pick a random column in M, enlarge its norm
by 10 times and repeat the same column five times.

Noise corruption: impose entrywise zero-mean noise on the
normalized matrix M.



EXPERIPICES
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EXPERIPICES
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EXPERIPICES

Computational efficiency
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Fig. 2. Running time (seconds) of norm sampling, leverage score sampling,
iterative norm sampling and RRQR factorization with respect to different
matrix sizes. Solid line: k = 25; dotted line: £ = 50; dashed line: £ = 100.
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EXPERIPICES

Human genetic data: Hapmap Phase |l

Hapmap dataset, e=5%
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CONCLUSION

Iterative norm sampling performs much better than leverage

score sampling in practice, which is not predicted by existing
theoretical results.

Iterative norm sampling is also computationally cheaper then
leverage score sampling, which requires truncated SVD.

Calls for improved analysis of iterative norm sampling!
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