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The linear regression model:
y = X By + €, X =R
We consider the low-dimensional regime: p < n

The subset selection problem: find p < k < 1 rows of X that
are most “informative” in estimating 3,

Also known as experimental design in statistics literature
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Motivating examples

Material synthesis

select “representative”
experimental settings

X
Wind speed prediction ;
select “important” locations

to measure wind speed
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What do we mean by “informative’?

-GRESSION

Many criteria exist

“Average” Mean-square error:

B~ Bgll2 i

inf K
X

Also known as A-optimality

min tr [(X'TX)_l]
X
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The combinatorial A-optimality is difficult to compute:

fopilh) —  min . fr {()ZTX')_l}
X cRkEXp

Time complexity for brute-force search: O(nk)

The computational question: polynomial-time algorithm with

f(X) < C(k,p) - fopr(k)



EX TENSIONS

; . o
Generalized linear model 7; = x; B9

Ologp(yi|zi; Bo) - 0% log p(ys; ms) o
I(X, o) ZE 5855 _; b T

Reduction to the ordinary linear regression:

. \/ 02 log p(vi; 1:)

iy = Lg
O’

Problem: 7); depends on the unknown model parameter

Solution: locally optimal designs.



EX TENSIONS

Delta’s method: estimating g(30)

Include both in-sample and out-sample predictions

tr [Vg(Bo)(Xd Xs) " Vg(Bo)] = tr [Go(X$ Xs)™']
Go = Vg(bo) ' Vg(Bo) € RP*P

If Gy = PP' is invertible:

.flvﬁi — P_lil?i



A CONVEX RELAXATION

A continuous relaxation:

o —s1nin tr
T ERP

sid. O

Teoilb) — = min tr
XERka

i —1

T
E ;XL .
==

‘1 S 1, ‘7‘(’”00 < 1/]6'

The continuous optimization problem is convex.

f* S kfopt(k)



A CONVEX RELAXATION

A few words on how to solve the convex optimization ...

n o
T —sInin tr E maz‘zxj :
TERP S
P

st Ol = Lol i

Projective gradient descent: 7(**Y) = P (w(t) — MV f(m (t)))
of
87'('@

Projection onto B (1) N By (1/k): can be done in O(nlog” n)

— |57 122, 5 = X T diag(m) X.

Gradient computation:
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The “only” problem left:
How to turn 7*into a valid subset X ?
A simple approach: sampling
Sample each row of X with probability {7}/,

Sample without replacement
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Performance guarantee:

Theorem. Suppose B = max |zill2 and 3, = XTdiag(

st

e

w G D)

)X I k

satisfies 1. > Q(B2HE 1 HZ log n) then with probability 1 — O(n™1)

~

f(X) < O(logk) - fopt (k)

Note: Q(B2||Et||2logn) > Q(plogn)

Proof technique: spectral sparsification. [Spielman and Srivastava’
08, Graph Sparsification by Effective Resistance]
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Spectral approximation:

(Lo Sl Y (i Lgy 3. Yo e Ry

Goal: find a subset of X such that 3 is a spectral approximation

of 3, = X "diag(n*)X

Immediately yields

~

K
s
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Consider with replacement sampling first.

Define: I =®Y2Xy X Tpl/?
diagl(ﬂ*) X*diag(w*)X
Pl 00— A=) b ) D
(P2). Range(IT) = Range(®'/2X)

(P3). |IL.||2 = ntz) ¥ 1z,
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Lemma. If |[ILSTI — II||s < 6 thenX T ®/2S®1/2X is a spectral
approximation of X ' ® X

Proof.
d A BEsG X - X X ). 0 (9 s
2T XTOX .
Z'II(S — DIz

(Because z is in the range of II) =

-

< |[TISTI — |2



SAMPLING BAGEI) SUBSET SELEC LICN

Lemma. Suppose S;; = 1/, with probability 7T,Zk and 0 otherwise. Then

ko?
Pr [||ITSTI — TI||5 > §] Snexp{—c- = - }
B2 |2

Proof (use matrix Chernoff):

Unbiased sub-sampling: E[ITSTI] = II

Recall that ||IL;. || = nfz; S e,
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Taking care of sampling without replacement

Say we have X sampled with replacement

X has O(log k) duplicates because ||7"||co < 1/k

Remove all duplicates in X

~

f(X™™) < O(logk) - f(X)
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Summary

Theorem. Suppose B = max |z:||2 and 2y = X " diag(7*) X . If k
satisfies . > ((B?||2 ! HZ IBg n) then with probability1 — O(n™")

f(X) < O(logk) - fops (k)

Two issues :
O(log k) approximation ratio instead of (1 + €)

Lower bound of k depends on the conditioning of 3,
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An interesting greedy algorithm presented in Avron and Boutsidis
2012, Faster Subset Selection For Matrices and Applications:

|. Start with the full subset S = {1,--- ,n}
2. Remove one row in S that results in the smallest f(.S’)

3. Repeat step 2 until |S| =k

7 1 —
Theorem 3.1 [AB’|2].tr[(X§Xs) 1} SZ i 1tr[(XTX) 1}




GREELDY BASEL) SUBSELSELEC O

Proof idea:

For 70 X P full-rank matrix A, there exists a (n — 1) X p matrix B such

g LT s

Why!

Volume sampling: Pr[S| det(XéTXS)

: A e U
Claim: E\S|=k [tI‘((X;_Xs) 1] < P

E e G

Proof quite complicated.
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- —p+1 -
Theorem 3.1 [AB’I2].tr[(XgXS) 1] SZ « 1”[(XTX) 1]
_p——

Some notable limitations
Additive guarantee: depends on tr [(XTX)_l} instead of fopt (k)
Computationally heavy: O(n®p?) computations at least.

A better idea: greedy removal on XTdiag(W*)X
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n 7
Define S() — Supp(ﬁ*) f* = Ielr (Z WZCCZZE;F) 9
=1

TERP

Recall that ||7*||cc < 1/k st >0, |x]1 <1, ||7]|e < 1/k.

k

: -
tr <1XSTOXSO> P ko) [(Xgoxso)‘l} < Foh)

Iiun the greedy ;Igorithm on Xg
-1 |fiﬂ-—jp-+-1
tr | (X§ Xs) ™| <
: ( 2 S) = R
- o0 Dl
- k—p+1

br [(XSTOXSO)”}

'jbpt(k)



GREEDY BASE

tr | (X§ Xs) ™|

D oUERE L SELEC TICON

- 501 |
— k—p+1

: fopt (k)

1So)
14
k

N
N\

Key: upper bound |So| = ||7"||0

Intuition: the L, constraint on 7T should encourage sparsity
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The Lagrangian multiplier:

LA A = ) = 3 A+ Y R (i -

- —iminitr
T ERP

st o O




GREEDY BASE

KKT condition: z, X722, = A\; — \; + p

Define;

A=—ivn = LR B = o) on e kL O — g

Some facts:

D oUERE L SELEC TICON

ity =0
v
Sns
i=1

1 =0}

~ ~

= =

A has at most k elements, and ||7"|lo = |A| + |B| < k + | B]

Complementary Slackness: V/; ¢ B, 5\2 — 3 0

23 te,=C, VieB
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> ln . Ve B

1 X

Theorem. Under regularity conditions, the system z, Az; = C for allz; € X

has no solution if |S| > p(p+1)/2

Proof. Define

& c RISIxplptl)/2 fc 2
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¢(r1)

d. : c RISIxp(p+1)/2

| P(xys))

If ® is has full column rank and |S| > p(p+1)/2,then ®z = ()
has no solution except for 2 = 0

Sufficient if X is a random design with an absolutely continuous
distribution

Consequence: |Sg| < k + p°
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Summary:
Theorem. Suppose k > 2p.Under regularity conditions, we have that
—1
tr (X Xs) | < (1+00*/K) - foprlh)

Corollary:if k= Q(e 'p?) then we achieve (1 + €)
approximation of fopt (k)
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|7 |lo < k + p°

Is this the best we can do!?

*

-k against p

-k against p s

I
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Conjecture. Hﬂ'* HO = O(p)

Amazing consequences (near-optimal tractable A-optimality)

Conjecture. There exists a polynomial-time algorithm such that, under
regularity conditions, produces |S| < k such that if K > €(p/€) then

tr [ (X3 Xs) '] < (1+€) - fopr(R)



SUMMARY

Algorithm Model Bound type  Approx. factor Condition on k
Leverage score sampling [25] | with replacement additive 3 asymptotic
Greedy removal [2] without replacement additive O(n/k) k = Q(p)
Convex A-opt. + sampling with replacement relative 1+e k= Qe 2B?%|=2)
Convex A-opt. + sampling | without replacement multiplicative O(log k) k= Q(B?|=:12)
Convex A-opt. + greedy without replacement relative 1+e€ Rigorous: k = )(c™'p")

Conjecture: £ = Q(e p)

Some open questions:
High-dimensional subset selection!?

Active (feedback-driven) learning
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= Graph sparsification: find a (small) subset of edges in a graph such
that the spectral properties of the original graph are preserved.

.l u

-~

Goal: ELTLspectraly approximates— LT [
m

AR e DT A5 TR T I e P S N )

AT N S ) B S s O SO e, (e A U S G D e T T G T L e S T O 7 S e e

PR Y]
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Weighted graph sparsification: new weights allowed to assign to
the selected set of edges

Spielman and Srivastava’08: Graph Sparsification by Effective Resistance

Unweighted graph sparsification: must keep weights unchanged
during sparsification

Marcus, Spielman and Srivastava’l 3: Interlacing Families and Bipartite
Ramanujan Graphs of All Degrees (Kadison-Singer problem)

Anderson, Gu and Melgaard’ | 4: Efficient Algorithm for Unweighted Spectral
Graph Sparsification
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One important difference ...

We don’t want to approximate the original design, but rather
an optimally-reweighted design.

Question: is there an unweighted sparsifier of a weighted
graph?



