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EXP SELECTION IN LINEAR REGRESSION

The linear regression model:

We consider the low-dimensional regime: p < n

The subset selection problem: find                    rows of X that 
are most “informative” in estimating

Also known as experimental design in statistics literature 
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EXP SELECTION IN LINEAR REGRESSION

Motivating examples

Material synthesis

select “representative” 
experimental settings

 Wind speed prediction

select “important” locations 
to measure wind speed
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SUBSET SELECTION IN LINEAR REGRESSION

What do we mean by “informative”?

Many criteria exist

“Average” Mean-square error:

Also known as A-optimality
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COMPUTATIONAL ASPECTS

The combinatorial A-optimality is difficult to compute:

Time complexity for brute-force search:

The computational question: polynomial-time algorithm with 
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EXTENSIONS

Generalized linear model

Reduction to the ordinary linear regression:

Problem:      depends on the unknown model parameter

Solution: locally optimal designs.
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EXTENSIONS

Delta’s method: estimating

Include both in-sample and out-sample predictions

If                     is invertible:
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A CONVEX RELAXATION

A continuous relaxation:

The continuous optimization problem is convex.
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A CONVEX RELAXATION

A few words on how to solve the convex optimization …

Projective gradient descent:

Gradient computation: 

Projection onto                            : can be done in    
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SUBSET SELECTION IN LINEAR REGRESSION

The “only” problem left:

A simple approach: sampling

Sample each row of X with probability 

Sample without replacement

How to turn     into a valid subset      ?⇡⇤ X̃
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SAMPLING BASED SUBSET SELECTION

Performance guarantee:

Theorem. Suppose                            and                                   . If k 
satisfies                                         then with probability                   

Note: 

Proof technique: spectral sparsification. [Spielman and Srivastava’ 
08, Graph Sparsification by Effective Resistance]
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SAMPLING BASED SUBSET SELECTION

Spectral approximation: 

Goal: find a subset of X such that     is a spectral approximation 
of 

Immediately yields
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SAMPLING BASED SUBSET SELECTION

Consider with replacement sampling first.

Define: 

(P1).

(P2). 

(P3). 
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SAMPLING BASED SUBSET SELECTION

Lemma. If                            then                           is a spectral 
approximation of 

Proof.
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SAMPLING BASED SUBSET SELECTION

Lemma. Suppose                   with probability      and 0 otherwise. Then  

Proof (use matrix Chernoff):

Unbiased sub-sampling: 

Recall that 
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SAMPLING BASED SUBSET SELECTION

Taking care of sampling without replacement

Say we have     sampled with replacement

   has O(log k) duplicates because

Remove all duplicates in   
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SAMPLING BASED SUBSET SELECTION

Summary

Theorem. Suppose                            and                                   . If k 
satisfies                                         then with probability                   

Two issues :

               approximation ratio instead of 

Lower bound of k depends on the conditioning of 
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GREEDY BASED SUBSET SELECTION

An interesting greedy algorithm presented in Avron and Boutsidis 
2012, Faster Subset Selection For Matrices and Applications:

1. Start with the full subset

2. Remove one row in S that results in the smallest

3. Repeat step 2 until    

Theorem 3.1 [AB’12]. 

S = {1, · · · , n}

f(S0)

|S| = k

tr
h�
X>

S XS

��1
i
 n� p+ 1

k � p+ 1
tr
h�
X>X

��1
i



GREEDY BASED SUBSET SELECTION

Proof idea:

For             full-rank matrix A, there exists a                     matrix B such 
that 

Why?

Volume sampling: 

Claim: 

Proof quite complicated.
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GREEDY BASED SUBSET SELECTION

Theorem 3.1 [AB’12].  

Some notable limitations

Additive guarantee: depends on                       instead of

Computationally heavy:                computations at least.

A better idea: greedy removal on 
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GREEDY BASED SUBSET SELECTION

Define

Recall that

Run the greedy algorithm on         :  
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GREEDY BASED SUBSET SELECTION

Key: upper bound 

Intuition: the L1 constraint on    should encourage sparsity 
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GREEDY BASED SUBSET SELECTION

The Lagrangian multiplier:

KKT condition:
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GREEDY BASED SUBSET SELECTION

KKT condition: 

Define: 

Some facts: 

A has at most k elements, and 

Complementary Slackness: 
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GREEDY BASED SUBSET SELECTION

 

Theorem. Under regularity conditions, the system                   for all                   
has no solution if 

Proof. Define 
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GREEDY BASED SUBSET SELECTION

If     is has full column rank and                             , then              
has no solution except for  

Sufficient if X is a random design with an absolutely continuous 
distribution

Consequence: 
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GREEDY BASED SUBSET SELECTION

Summary:

Theorem. Suppose             . Under regularity conditions, we have that

Corollary: if                         then we achieve             
approximation of 
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GREEDY BASED SUBSET SELECTION

 

Is this the best we can do?
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GREEDY BASED SUBSET SELECTION

Conjecture. 

Amazing consequences (near-optimal tractable A-optimality)

Conjecture. There exists a polynomial-time algorithm such that, under 
regularity conditions, produces             such that if                     then  
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SUMMARY

Some open questions:

High-dimensional subset selection?

Active (feedback-driven) learning



CONNECTIONS TO GRAPH SPARSIFICATION

Graph sparsification: find a (small) subset of edges in a graph such 
that the spectral properties of the original graph are preserved.
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CONNECTIONS TO GRAPH SPARSIFICATION

Weighted graph sparsification: new weights allowed to assign to 
the selected set of edges

Spielman and Srivastava’08: Graph Sparsification by Effective Resistance

Unweighted graph sparsification: must keep weights unchanged 
during sparsification

Marcus, Spielman and Srivastava’13: Interlacing Families and Bipartite 
Ramanujan Graphs of All Degrees (Kadison-Singer problem)

Anderson, Gu and Melgaard’14: Efficient Algorithm for Unweighted Spectral 
Graph Sparsification



CONNECTIONS TO GRAPH SPARSIFICATION

One important difference …

We don’t want to approximate the original design, but rather 
an optimally-reweighted design.

Question: is there an unweighted sparsifier of a weighted 
graph?


