https://arxiv.org/abs/2009.12920

Privacy and Fairness in Data-driven Personalized Revenue Management

Yining Wang

Warrington College of Business,

University of Florida

Data-driven revenue management

Using data analytics to help revenue / profit

Pink's Hot Dogs

The Original

Pink's Hot Dogs)

decisions.

Dynamic pricing

Best flig	hts ① cludes taxes + fees for 1 adult. <u>Additional bag fees</u> and other	r fees may apply.		Sort by:	ARTHAY CIRC	thoose a ride, or swipe up for	
	7:20 AM – 12:59 PM United · Operated by Air Wisconsin DBA United Express	5 hr 39 min MCO-YUL	1 stop 1 hr 38 min IAD	\$141	200	UberX ± 4 11:14am dropoff	\$8-10
	10:40 AM - 4:58 PM American · Operated by PSA Airlines as American Eagle	6 hr 18 min MCO-YUL	1 stop 1 hr 54 min PHL	\$141	R	UberXL 11:16am	\$11-13
	1:10 PM – 7:16 PM Air Canada · Operated by Air Canada Rouge, Air Canada	6 hr 6 min MCO-YUL	1 stop 2 hr 10 min YYZ	\$174	2	Comfort New 11:14am	\$10-11
					Uber in California sho a range of prices inste of up-front prices		nstead

Data-driven revenue management

 Using data analytics to help revenue / profit decisions.

Data-driven revenue management

- The population approach:
 - Use population data such as the average demand or click-through rates over a region to make general price, promotion and inventory decisions.
- The personalized approach
 - Use personalized data to make <u>individualized</u> price/promotion/recommendation decisions.
 - More detailed, refined with higher profits

Example: Yamibuy.com (online retail)

Example: Yamibuy.com (online retail)

- Example: Yamibuy.com (online retail)
 - Personalized price decisions: set higher prices for those who target higher brands?
 - Personalized recommendation/promotion decisions: promote new/emerging items to social influencers (i.e. many posts / followers)?

User profiles

Social Network

Data privacy in Personalized revenue management

- Personalized data involved in data-driven decision making are sensitive and private.
 - Example: age, gender, telephone number
 - More serious: medical history (drug stores), credit history (credit cards/loans)
- Privacy breaches of personalized data can have serious ethical and legal consequences!

 Question. When using personalized data to make decisions, how to avoid inadvertently leaking private data of the users?

Data-driven personalized pricing

The model.

Posted price: p_t

T consumers, arriving sequentially.

Personal info. (age, gender, etc.)

History (purchase, credit, medical, etc.)

Social network (e.g., page-rank)

Vector representation

$$\phi_t = \phi(x_t, p_t)$$

$$E[y_t|x_t,p_t] = f(\langle \phi_t, \theta^* \rangle)$$

Data-driven personalized pricing

- The "learning-while-doing" framework: learning the model θ^* while optimizing prices $\{p_t\}_{t=1}^T$
 - Many existing works in the literature. Zeevi &
 Besbes'09,15, Broder & Rusmevichientong'12, Chen &
 Gallego'19, Wang et al.'14, Keskin & Zeevi'14
 - The key principle: "Optimism in the Face of Uncertainty" (OFU), by Abbasi-Yadkori et al. in NeurIPS, 2011.
 The predicted demand at p

$$\hat{p}_t = \arg\max_{p} p \times \left[f(\phi_t, \hat{\theta}_{t-1}) + \sqrt{\phi_t^T \Lambda_{t-1}^{-1} \phi_t} \right]$$

Confidence interval of the prediction

Concerns over privacy leakage

- The customer's profile x_t contains many sensitive information that shouldn't be published.
- The customer's purchase decision y_t is sometimes also sensitive information.
 - Whether the customer purchased certain medication
- Concerns: even if the pricing algorithm doesn't release x_t, y_t , could other people still infer these sensitive data, from the posted prices?

Concerns over privacy leakage

- **Example:** Privacy breach of purchase activity y_t .
 - Frequently, with active recent purchase activities the retailer spikes the price for larger profit margins.
 - A potential attack by a malicious agent: pretend as legitimate users before and after a customer of interest

If the agents see a price increase $p_{t-1} < p_{t+1}$, it's more likely the person of interest made purchases.

• **Differential privacy**: a mathematically rigorous way to quantify privacy leakage. Dwork et al.'06

 Differential privacy: a mathematically rigorous way to quantify privacy leakage. Dwork et al.'06

$$\Pr[O|D] \le e^{\varepsilon} \Pr[O|D'] + \delta$$

o Interpretation: the probability of certain outcomes from the policy O does not change much, when a user's sensitive information changes $(D \rightarrow D')$.

 Differential privacy: a mathematically rigorous way to quantify privacy leakage. Dwork et al.'06

$$\Pr[O|D] \le e^{\varepsilon} \Pr[O|D'] + \delta$$

• Differential privacy: a mathematically rigorous way to quantify privacy leakage. Dwork et al.'06 $\Pr[O|D] \leq e^{\varepsilon} \Pr[O|D'] + \delta$

- The (ε, δ) -differential privacy: the smaller ε, δ are, the stronger privacy demands are requested by the firms/practitioners
- Objective: design differentially private algorithms without sacrificing too much profits.

Algorithm framework

Algorithm details

- The PrivateMLE routine: produce privacy-aware model estimates using data prior to time t
- Key idea: "objective perturbation"

$$\max_{\theta} \sum_{\tau < t} \log P(y_{\tau} | x_{\tau}, p_{\tau}; \theta) - \underbrace{w_t^{\top} \theta}_{t} \quad \text{The calibrated noise}_{w_t \sim N(0, v_{\varepsilon, \delta}^2)}$$

- O Privacy arguments in Kifer et al.'12, Chaudhuri et al.'11
- Utility (error) analysis of \(\hat{\theta}_t \theta^* \) available by analyzing the first-order KKT condition of the perturbed objective.

Algorithm details

- The **PrivateCov** routine: give signals to invoke PrivateMLE for estimates, as few as possible.
- Approach: sequentially releasing differentially private sample covariance estimates.
 - "Tree-based" protocol in releasing consecutive sample covariances to facilitate frequent PrivateCov checks.
 Dwork et al.'10, 14, Chan et al.'11

Algorithm details

• At each time t, report **privatized** version $\tilde{\Lambda}_t$ of the sample covariance $\Lambda_t = \sum_{\tau < t} x_\tau x_\tau^T$ using **tree-based aggregation**

Example: $\sum_{\tau=1}^{7} x_{\tau} x_{\tau}^{T}$ is calculated

$$\sum_{\tau=1}^{4} x_{\tau} x_{\tau}^{T} + \text{noise}$$

$$\sum_{\tau=5}^{6} x_{\tau} x_{\tau}^{T} + \text{noise}$$

$$\sum_{\tau=7} x_{\tau} x_{\tau}^{T} + \text{noise}$$

Regret analysis

- Regret measure: performance of a (privacy-aware) policy π measured by $E^{\pi}[\sum_{t=1}^{T}r_{t}(p_{t}^{*})-r_{t}(p_{t})]$
 - o p_t is the price offer by π and $r_t(p) = p \times E[y_t | p, x_t]$
 - o p_t^* is the **optimal** price maximizing $r_t(.)$
- Without privacy concerns, the best algorithm has regret $\tilde{O}(d\sqrt{T})$. Filippi et al.'10, Abbasi-Yadkori et al.'11
- What does the regret look like for our proposed algorithm, subject to (ε, δ) -privacy constraints?

Regret analysis

- Without privacy concerns, the best algorithm has regret $\tilde{O}(d\sqrt{T})$. Filippi et al.'10, Abbasi-Yadkori et al.'11
- Subject to (ε, δ) -differential privacy constraints, our algorithm has regret $\tilde{O}(\varepsilon^{-1}\sqrt{d^3T\ln^5(\delta^{-1})})$
 - o Matches $\tilde{O}(\sqrt{T})$ regret, with slightly worse d dependency.
 - In practice d is usually small (few #. of covariates).
- If the contexts x_t are i.i.d. and non-degenerate, the regret can be improved to $\tilde{O}(d\sqrt{T} + \varepsilon^{-2}d^2\ln^{10}(\delta^{-1}))$
 - o Completely matches $\tilde{O}(d\sqrt{T})$ in the dominating term.

Numerical results

Average regret, with $\delta = 1/T^2$ and changing T

Additional results available in the paper

Future directions

Centralized (global) privacy vs. Local privacy

Key question:
Do *I* (as users) trust the
outside queriers (other users),
or the
data curator (the company),
or neither?

Future directions

- Centralized (global) privacy vs. Local privacy
- For local privacy, the users do **not** trust the company and requires their profiles $\{x_t\}$ to be anonymized *first* before storing at the company's database.
- Idea: first-order methods with perturbed gradients

$$x_t, y_t \Longrightarrow g_t = \nabla_\theta \log P(y_t, x_t; \hat{\theta}_{t-1}) \Longrightarrow \tilde{g}_t = g_t + \xi$$

Future directions

- Data privacy vs. Decision fairness
- Data privacy requires the platform to avoid privacy leakage of users' data, through data storage or revenue decisions.
- Decision fairness, on the other hand, requires the firm to not discriminate against users inadvertently with their personalized data.

Images for professional hair styles

Decision fai

short

job interview

Images for unprofessional hair styles

google unprofessional

black

natural hair

afro

hair results

Decision fairness

"Individual fairness" or "Meritocratic fairness".

Decision fairness

- "Individual fairness" or "Meritocratic fairness".
- "Group fairness": many times, fairness across user groups is more important/visible.

	WHITE	AFRICAN AMERICAN
Labeled Higher Risk, But Didn't Re-Offend	23.5%	44.9%
Labeled Lower Risk, Yet Did Re-Offend	47.7%	28.0%

Overall, Northpointe's assessment tool correctly predicts recidivism 61 percent of the time. But blacks are almost twice as likely as whites to be labeled a higher risk but not actually re-offend. It makes the opposite mistake among whites: They are much more likely than blacks to be labeled lower risk but go on to commit other crimes. (Source: ProPublica analysis of data from Broward County, Fla.)

Decision fairness

- Suppose users come from *K* **sensitive groups**, which are observable to the firm (racial, financial, demographical, etc.)
- The revenue decisions are required to solicit similar average demands across all sensitive groups.

Group fairness in personalized pricing

- Customer has profile $x \in X$, belongs to group k
 - Finite profile set $|X| < \infty$;
 - Personalized price decision $p_t: X \to [p, \overline{p}]$;
- Revenue maximization with fairness constraints: Distrb. Of profiles for ALL consumers

max
$$E_x$$
 $G[p_t(x)D(p_t(x))]$ $\bar{G} = \frac{1}{K}\sum_{k=1}^K \pi_k G_k$

Discrepancy between sensitive groups
$$\forall k \neq k'$$
 s.t. $\left| E_{x \sim G_k} [D(p_t(x))] - E_{x \sim G_{k'}} [D(p_t(x))] \right| \leq \varepsilon$

Group fairness in personalized pricing

- Customer has profile $x \in X$, belongs to group k
 - Finite profile set $|X| < \infty$;
 - Personalized price decision $p_t: X \to [p, \overline{p}]$;
- Revenue maximization with fairness constraints:

$$\max E_{x \sim \bar{G}}[p_t(x)D(p_t(x))]$$
s.t.
$$\left| E_{x \sim G_k}[D(p_t(x))] - E_{x \sim G_{k'}}[D(p_t(x))] \right| \le \varepsilon$$

- Learning-While-Doing:
 - Replace D(.) with \overline{D}_t (UCB) or $\widehat{D}_t \sim Q(\cdot | y_{< t})$ (TS)

Thank you! Questions?

Example: Booking.com (hotel reservations)

Can we use the user's

- home address, or
- past booking history, to
- 1. **promote** certain hotels (destinations closer to the user's home address), or
- 2. **price** stays at differently (set high prices for high-end or frequent business travelers)

Technical comment

- Why not perturb the user profiles x_t directly?
- Imagine a simple task of releasing the **sample** average of $x_1, ..., x_n$, $\bar{x} = (x_1 + \cdots + x_n)/n$
 - o If I add noise first: $\tilde{x}_i = x_i + \xi_i$, and then report the average $\hat{x}^1 = (\tilde{x}_1 + \dots + \tilde{x}_n)/n$, we have that $|\hat{x}^1 \bar{x}| = \widetilde{O}(1/\varepsilon\sqrt{n})$
 - o If I compute $\bar{x} = (x_1 + \dots + x_n)/n$ first and then report $\hat{x}^2 = \bar{x} + \bar{\xi}$, then we have that

$$\left|\hat{x}^2 - \bar{x}\right| = \widetilde{O}(1/\varepsilon n)$$

Machine learning for revenue management

- Machine learning and big-data analytics
 - Supervised, unsupervised and semi-supervised learning
 - Active learning, online learning, design of experiments
 - Reinforcement learning and multi-agent learning
 - Deep learning and learning representations
 - Resource-constrained learning (communications, computations, privacy, fairness, etc.)
- Many of the above techniques can be adapted to solve challenges in data-driven revenue management!

Machine learning for revenue management

- Question 1. How to systematically incorporate personalized data to maximize revenue/profit performances as much as possible?
- Applicable ML techniques: online and bandit learning

Machine learning for revenue management

- Question 2. When using personalized data to make decisions, how to avoid inadvertently leaking private data of the users?
- Applicable ML techniques: differential privacy

Concerns over privacy leakage

- **Example:** Privacy breach of customer profile x_t .
 - o Most pricing systems post similar prices to consumers with similar profiles in the future (i,e., similar x_t)
 - A potential attack by a malicious agent: pretend as consumers before and after a customer of interest.

If the agents see similar prices $p_{t-1} \approx p_{t+1}$, it is more likely that the customer of interest has similar profiles.

Malicious agent, $x_{t+1} \approx x_t$

Malicious agent, $x_{t-1} \approx x_t$

Technical challenges

- <u>Challenge 1.</u> General demand models do not admit sufficient statistics like the linear regression.
 - Cannot directly apply Shariff & Sheffet'18 which simply perturbs the sample covariance and average demand.
 - Solution: privacy-aware maximum likelihood estimation with a concave/convex formulation
 - Privacy analysis comes from Kifer et al.'12, Chaudhuri et al.'11, but utility/error analysis is re-done and novel.

Technical challenges

- <u>Challenge 2.</u> the "curse of composition": releasing too many statistics in DP formulation.
 - Cannot update demand model after every customer. That leaks top much privacy through composition.
 - Solution: infrequent private model updates, with private protocols signaling updates as well.
 - Ideas drawn from non-private low-switching policies
 Abbasi-Yadkori et al.'11 and private protocols for sample covariance and sequence releases. Dwork et al.'10, 14,
 Chan et al.'11

Numerical results

Average regret, with $\delta = 1/T^2$ and changing ε