Minimax Linear Regression under Measurement Constraints

Yining Wang
Aarti Singh
Machine Learning Department, Carnegie Mellon University, Pittsburgh PA, USA

Abstract

We consider the problem of linear regression under measurement constraints and derive computationally feasible subsampling strategies to sample a small portion of design (data) points in a linear regression model \(y = X\beta + \epsilon\). The derived subsampling algorithms are minimax optimal for estimating the regression coefficients \(\beta\) under the fixed design setting, up to a small \((1 + \epsilon)\) relative factor. Experiments on real-world data confirmed the effectiveness of our subsampling based linear regression algorithm with comparison to several other popular competitors. A longer technical report for this work can be found in (Wang & Singh, 2016).

1. Introduction

We consider the linear regression model

\[
y = X\beta + \epsilon,
\]

where \(X \in \mathbb{R}^{n \times p}\) is a fixed design matrix or data matrix, \(y \in \mathbb{R}^n\) is the response, \(\epsilon \sim N_0(0, \sigma^2 I_n)\) are i.i.d. white Gaussian noise with variance \(\sigma^2\) and \(\beta\) is a fixed but unknown \(p\)-dimensional coefficient vector. We are interested in the setting when no distributional assumptions are made on the data \(X\). If there are more samples than variables \((n > p)\) i.e. the “low-dimensional” setting and \(X\) has full column rank, ordinary least squares (OLS) estimator

\[
\hat{\beta}_{\text{ols}} = (X^T X)^{-1} X^T y
\]

is known to be optimal for estimating both \(\beta\) and \(X\beta\).

Despite the optimality of OLS, in practice it may not be feasible to obtain the full \(n\)-dimensional response vector \(y\) due to sampling or measurement constraints. For example, in some geographical or genetic applications the number of data points \(n\) might be equal to the entire population of a region or all genes on human chromosomes. Acquiring response variables (labels) for all data points can then be very expensive or even infeasible. It is then an important question to subsample a small set of “representative” data points to regress on so that the resulting estimation or prediction is as accurate as possible.

In this paper, we present a systematic approach for data subsampling in low-dimensional linear regression models. This problem is known as experimental design in the statistics literature (Pukelsheim, 1993), and leads to a combinatorial optimization problem. Our main idea is to consider a convex relaxation of this otherwise computationally intractable problem and perform sampling with respect to the optimal solution of the relaxed convex problem. Our main results are polynomial-time near-optimal minimax subsampling strategies for linear regression with finite-sample guarantees, which greatly generalizes prior attempts at deriving statistically optimal subsampling strategies (Zhu et al., 2015; Chen et al., 2015; Ma et al., 2015).

2. A minimax framework

We consider the following subsampling model:

Definition 2.1 (Subsampling model). Let \(X\) be a fixed \(n \times p\) design matrix with full column rank and \(k\) be the subsampling budget, with \(p \leq k \leq n\). An algorithm \(A\) first observes \(X\) in full and produces, either deterministically or randomly, a matrix \(\tilde{X} \in \mathbb{R}^{k \times p}\) such that each row of \(\tilde{X}\) is equal to a particular row in \(X\) (duplicates allowed). A then observes \(\tilde{y} = \tilde{X}\beta + \epsilon\) with \(\epsilon \sim N_0(0, \sigma^2 I_k)\) and attempts to estimate the underlying model \(\beta\). We use \(A(k)\) to denote the set of all such subsampling algorithms.

The main goal of this paper is to characterize the minimax performance of subsampled linear regression defined as

\[
\inf_{A \in A(k)} \sup_{\beta \in \mathbb{R}^p} \mathbb{E} \left[\|\tilde{\beta} - \beta\|^2 \right],
\]

where the expectation is taken over the noise variables \(\epsilon\) and also the inherent randomness in the algorithm \(A\).
3. Near-optimal subsampling

We present computationally efficient algorithms for estimating regression coefficients β in the subsampled linear regression framework.

Combinatorial A-optimality Because the variance of $\hat{\beta}_{\text{ols}}$ regressed upon subset (X_S, y_S) (where X_S, y_S indicate rows of X, y corresponding to indices in S) is $\sigma^2 \operatorname{tr}((X_S^\top X_S)^{-1})$, a natural formulation is the “A-optimality” criterion:

$$\text{A-optimality: } \min_{|S| \leq k} \operatorname{tr}((X_S^\top X_S)^{-1}). \tag{4}$$

Unfortunately, Eq. (4) is a combinatorial optimization and is in general computationally intractable. Approximation methods exist (Avron & Boutsidis, 2013) but their analysis do not reveal improved or near minimax statistical rates.

A convex relaxation A convex relaxation of Eq. (4) is

$$\min_{\pi_1, \cdots, \pi_n} \operatorname{tr}((X^\top \text{diag}(\pi) X)^{-1}) \tag{5}$$

s.t. $\sum_{i=1}^n \pi_i \leq 1; \; \pi_1, \cdots, \pi_n \geq 0.$

Note that we have substituted 1 for k in the “signal level” $\sum_{i=1}^n \pi_i$ for normalization purposes.

The subsampling algorithm Let π^* be the optimal solution and f_{opt} be the optimal value of the objective in Eq. (5), which can be computed in polynomial time via SDP or any conventional convex optimization techniques. The algorithm then obtains k i.i.d. sampled rows of X, where row x_i is sampled with probability π_i^*. This step is repeated $\Theta(\log n)$ times and X_S with the smallest $\operatorname{tr}((X_S^\top X_S)^{-1})$ is used for subsampled regression. The following theorem shows that such algorithm achieves near-optimal rates for estimating regression coefficients.

Theorem 3.1. Fix $X \in \mathbb{R}^{n \times p}$ with full column rank and error tolerance parameter $\epsilon \in (0, 1/2)$. Suppose $\sup_{1 \leq i \leq n} \|x_i\|_2 \leq B < \infty$. Let $\Sigma^* = \sum_{i=1}^n \pi_i^* x_i x_i^\top$. If $k = \Omega(\epsilon^{-2} B^2 \|\Sigma^*\|_2^{-1}) \log(n/\epsilon)$ then

$$\frac{\sigma^2}{k} f_{\text{opt}} \leq \inf_{A \in A(k)} \sup_{\beta} \mathbb{E} \left[\|\hat{\beta} - \beta\|_2^2\right] \leq \frac{(1 + \epsilon)\sigma^2}{k} f_{\text{opt}}.$$

In addition, the algorithm described before achieves the upper bound above with poly($n, \log(1/\epsilon)$) running time.

In (Wang & Singh, 2016), we also give interpretable subsampling probabilities for the random design setting and demonstrate explicit gaps in statistical rates between optimal and baseline (e.g., uniform) subsampling methods. The general idea is to subsample data points to form a better-conditioned design set X_S in order to reduce error of the resulting subsampled OLS regression estimator.

4. Simulation results

We compare our methods on synthetic datasets with existing subsampling strategies in prior literature, which include uniform sampling ($\pi_i = 1/n$), leverage score sampling ($\pi_i \propto x_i^\top \Sigma_X^{-1} x_i$ (Ma et al., 2015)), double leverage score sampling ($\pi_i \propto \|\Sigma_X^{-1} x_i\|_2^2$), PL sampling ($\pi_i \propto \|x_i\|_2$) (Zhu et al., 2015)). Though not a subsampling method, we also compare our algorithm with the popular D-optimality criterion 1 which finds a subset S of size k that maximizes $\det(X_S^\top X_S)$. For synthetic datasets, we use $n = 10000$ data points with $p = 10$ variables and generate $\beta \sim \mathcal{N}_p(0, I)$ and each row of X i.i.d. from $\mathcal{N}(0, \Sigma_X)$, where $\Sigma_X = U A U^\top$ for some random orthonormal basis U and $A = \text{diag}(\lambda_1, \cdots, \lambda_p)$. We set $\sigma^2 = 0.01$ throughout the synthetic experiments. We adopt the sampling with replacement setting, where fresh noise are imposed on the same data point x_i if it is sampled more than once.

Figure 1 depicts the average estimation error against number of subsamples k (ranging from 0.01n to 0.1n) under different spectral decay regimes of X. We observe that the near-optimal sampling strategy (depicted in black lines) outperforms the other subsampling methods, including the

1 Implemented using Matlab’s candexch routine.
approximate D-optimality designs. The performance gap (with respect to D-optimality, for example) is even larger when the design matrix X is closer to singular (e.g., exponential spectral decay $\lambda_k \propto e^{-k}$), which is consistent with out theoretical findings.

References

