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Abstract
Classical statistics and machine learning posit that data are passively collected,

usually assumed to be independently and identically distributed. In modern data
science applications, however, many times a data analyst has control over how data
are acquired or selected. For example, in simulation/hyper-parameter optimization
the input parameter configurations can be adaptively chosen to obtain data resulting
from the carefully chosen input parameters. In sequential decision making problems,
data such as feedback or utility depend on the particular decisions which can be
adaptively and selectively made.

The main topic of this thesis is to study how selective data acquisition techniques
can be applied in estimation, optimization and/or decision making problems. Three
representative problems are studied, as we explain in more details below:

1. Computationally tractable experimental design, which studies the classi-
cal question of (optimal) experimental design in linear and generalized linear
models from a computational perspective. We design polynomial-time algo-
rithms with rigorous approximation guarantees in terms of optimality criteria,
and show an application to a 3D lightweight structure optimization problem.

2. Sample-efficient query regimes for nonparametric optimization, which tries
to understand the most sample efficient regimes to make adaptive queries to a
nonparametric function for optimization purposes. We consider three different
settings of nonparametric optimization: smooth non-convex functions in low
dimensions, high-dimensional convex functions with sparsity structures, and
convex function sequences that evolve slowly over time.

3. Dynamic assortment optimization, which studies the classical assortment op-
timization problem in revenue management from a dynamic perspective, by
combining statistical estimation of customers’ utility models and optimization
of assortments based on estimated utilities into a unified theoretical framework.

We characterize through statistical minimaxity the fundamental information-theoretic
limits of these problems as well as notions of optimality of our proposed methodolo-
gies. On the practical side, we demonstrate industrial engineering and/or operations
management applications such as lightweight structural design, dynamic pricing and
assortment planning.
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Chapter 1

Introduction

Classical statistics and machine learning posit that data are passively collected, usually assumed
to be independently and identically distributed. In modern data science applications, however,
many times a data analyst has control over how data are acquired or selected. One particular
interesting data collection scheme is selective/active data acquisition, in which a data analyst
is capable of selecting which data should be collected prior to experiments/measurements, or
updating his/her data collection as the experiments and data analysis are undergoing.

In this thesis, we concentrate on theoretical and practical aspects of selective/active data ac-
quisition for a wide range of estimation and optimization problems. The problems we considered
and results we obtained are summarized in the rest of this chapter.

1.1 Computationally tractable experimental design methods

Given a large pool of candidate design points (unlabeled data points), the problem of experimen-
tal design is to select, prior to any actual experimental/labeling procedures, a small subset of
design points on which measurements or labels are to be collected, in order to maximize statis-
tical efficiency and minimize measurement/labeling efforts. More specifically, given a pool of
data/design points X , the objective is to select aq subset X Ď X under resource constraints such
as |X| ď k that is optimal for a given learning objective.

The experimental design problem has two aspects: the statistical question focuses on which
candidate set has the maximal statistical efficiency, and the computational question studies how
to find a good candidate set in a computationally tractable manner. While the statistical question
has been mostly well understood (at least for linear models and their variants) (Fedorov, 1972;
Pukelsheim, 2006), the computational aspect is less investigated, and computationally tractable
(polynomial running-time) methods with rigorous approximation statistical efficiency guarantees
are particularly rare.

My thesis work on the computationally tractable experimental design problem is presented
in Chapter 2. The algorithmic framework is a continuous relaxation of the discrete combinato-
rial experimental design problem, which is easy to solve using conventional convex continuous
optimization methods (Boyd & Vandenberghe, 2004; Yudin & Nemirovskii, 1983). After the
continuous relaxation, sampling based or greedy techniques are applied to “round/sparsify” con-
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tinuous solutions into discrete subsets of selected candidate design points.
Rigorous approximation guarantees are established for the proposed computationally tractable

algorithms. More specifically, we show for linear regression models that if k (the number of se-
lected candidate points) is at least Ωpp{ε2q where p is the problem dimension (i.e., number of
variables), then the proposed algorithm achieves a p1 ` εq relative approximation of the opti-
mal statistical efficiency. We also demonstrate our methods on a real-world application of 3D
lightweight structural design as an application of our proposed methods.

1.2 Selective queries in nonparametric optimization
Many practical questions can be cast as optimization (e.g., finding the minimum value) of an
unknown function f : X Ñ R on a known domain X Ď Rd, through selective queries of noisy
function values fpxtq at carefully selected query points txtut. The examples of hyper-parameter
estimation and some experiment/simulation optimization problems fall into this framework, by
abstracting the mapping from hyper-parameter or simulation settings to performance of an algo-
rithm/experimental protocols as the unknown function f to be optimized.

Chapter 3 presents my thesis work on the nonparametric optimization question, underly three
different settings. Sec. 3.1 considers the case where domain dimension d is very small, and
derives tight local minimax rates for optimizing a smooth nonparametric function with certain
level set growth conditions. Sec. 3.2, on the other hand, focuses on settings where domain
dimension d is very large, maybe far exceeding the number of queries/experiments n allowed.
By imposing sparsity and convexity assumptions on f , the number of queries n needs only to
depend on the “intrinsic” dimension s and the logarithm of the ambient dimension d. In Sec. 3.3,
we consider a non-stationary version of the nonparametric optimization problem in which the
function to be optimized is allowed to slightly change over time. Such non-stationary settings
are useful in operations/revenue management applications such as dynamic pricing.

1.3 Dynamic assortment planning
ConsiderN items for sale, each associate with a known “revenue parameter” ri P r0, 1s indicating
the amount of revenue collected once a customer purchases the ith item. At each time epoch t,
the retailer provides an assortment of items St Ď rN s to an incoming customer, and observes a
purchasing action it P St Y t0u, indicating which item in the assortment St is purchased by the
customer (if it P St) or no purchase is made (it “ 0), in the case that none of the items in St is
satisfactory to the customer.

Usually, the customer’s purchasing choice it is governed by a probabilisitic model

it „ pθ0p¨|Stq,

where θ0 is an underlying parameter characterizing the customer’s preferences of items. Ex-
amples include independent preference parameters vi for each i P rN s, or contextual models
vi “ exptxJi θ0u. Unlike stationary settings where θ0 is perfectly known and the assortment
planning problem is merely a combinatorial optimization one (see, e.g., Anderson et al. (1992);
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Kök et al. (2008)), under dynamic settings the preference parameters θ0 are unknown and have
to be inferred or estimated on the fly from customers’ purchasing actions titut (Agrawal et al.,
2017a; Rusmevichientong & Topaloglu, 2012; Saure & Zeevi, 2013).

Chapter 4 describes my thesis work on the dynamic assortment planning problem. Sec. 4.1
considers the plain multinomial logit choice model and drives a surprising N -independent regret
bound based on a novel trisection based algorithm. Sec. 4.2 studies the more complex nested logit
choice model, and finally in Sec. 4.3 a discrete choice model with contextual information of items
is studied. For all variants of discrete choice models (and the dynamic assortment optimization
problems they give rise to), rigorous regret upper bounds are proved for the policies, and regret
lower bounds are proved whenever possible to show the optimality of our proposed methods.
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Chapter 2

Computationally tractable experimental design
methods

(Optimal) design of experiments is a classical topic in statistics research (Pukelsheim, 2006).
Given a large collection of design points X “ tx1, x2, ¨ ¨ ¨ , xnu P Rp, the objective of experi-
mental design is to select a small subset tz1, ¨ ¨ ¨ , zku Ď X with k ! n such that regression over
the selected subset of design points achieves the optimal statistical efficiency. The experimen-
tal design problem is particularly important in several scientific and engineering fields, where
experiments are expensive and time-consuming to carry out, and a careful experimental design
strategy is mandatory.

In this chapter, we concentrate on the computational aspects of experimental design. More
specifically, we design algorithms that are computationally tractable for very large pool of de-
sign points (large n) while still maintaining the near-optimal statistical efficiency of the selected
design subset tz1, ¨ ¨ ¨ , zku. Apart from rigorous approximation guarantees theoretically, we also
consider a real-world application of 3D lightweight structure design (Ulu et al., 2017) and show
significant improvement over existing methodologies. Finally, we study several extension of
our proposed methodologies, including the application to quantized linear regression, transfer
learning and generalized linear models.

2.1 Backgrounds and optimality criteria

Consider a linear model

y “ Zβ0 ` ξ, (2.1)

where Z “ pz1, ¨ ¨ ¨ , zkq P Rkˆp is the stacked design matrix consisting of selected design
points tz1, ¨ ¨ ¨ , zku, β0 P Rp is an unknown p-dimensional regression model to be estimated, and
ξ „ Nkp0, σ2Iq is a centered Gaussian noise random vector.

The standard estimator of β0 is the ordinary least squares (OLS) estimator, of the form pβ “
pZJZq´1ZJy. By simple algebra it is easy to check that the estimation error pβ´β0 is a centered
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Gaussian random vector:

pβ ´ β0 „ Npp0, σ2Σq where Σ :“ pZJZq´1
“

˜

k
ÿ

i“1

ziz
J
i

¸´1

. (2.2)

If the variance of pβ ´ β is to be minimized (i.e., minimizing E}pβ ´ β}22), one should seek
design subset Z with the smallest trpΣ´1q. Another popular objective is to maximize the deter-
minant of Σ, which has the advantage of being invariant with respect to unit of measurements.
We use the following definition of optimality criteria to abstract all criteria that reflect certain
aspects of desirable statistical efficiency:
Definition 1 (Optimality criteria). An optimality criterion is a function f : S`p Ñ R` that maps
a p-dimensional positive definite matrix Σ to a positive real number fpΣq. A smaller fpΣq
indicates better statistical efficiency of the corresponding selected design set Z.

Below we list several popular choices of the objective functions f :
- A-optimality (Average): fApΣq “ 1

p
trpΣ´1q;

- D-optimality (Determinant): fDpΣq “ pdet |Σ|q´1{p;
- T-optimality (Trace): fT pΣq “ p{trpΣq;
- E-optimality (Eigenvalue): fEpΣq “ }Σ´1}op “ λmaxpΣ

´1q;
- V-optimality (Variance): fV pΣq “ 1

n

řn
i“1 x

J
i Σ´1xi;

- G-optimality: fGpΣq “ maxi x
J
i Σ´1xi.

We refer the readers to (Pukelsheim, 2006) for a complete list and discussion of various
optimality criteria used in the experimental design literature.

With the formal definition of an optimality criterion f , the experimental design problem can
then be formulated as a combinatorial optimization problem

min
s
F psq “ min

s
f

˜

n
ÿ

i“1

sixix
J
i

¸

s.t. si P N, 0 ď si ď b,
n
ÿ

i“1

si ď k. (2.3)

Here, when b “ 1 we operate under the “without replacement” setting in which each design
point xi in pool X can be selected at most once. On the other hand, b “ k is referred to as
the “with replacement” setting in which there is no limits on the number of times each point is
selected. It is a simple exercise that the b “ k problem can be reduced to the b “ 1 problem
by replicating each xi for k times and is therefore easier. Very often, an algorithm that solves
the b “ 1 instance can be easily altered to handle the b “ k case without explicit replication of
design points or an increase of running time.

Instead of considering each optimality criterion separately, in our work we adopt a unified ap-
proach that applies to a wide range of optimality criteria satisfying minimal regularity conditions.
More specifically, we define “regular” criteria as follows:
Definition 2 (Regular criteria). An optimality criterion f : S`p Ñ R is regular if it satisfies the
following properties:

1. Convexity: 1 fpλA`p1´λqBq ď λfpAq` p1´λqfpBq for all λ P r0, 1s and A,B P S`p ;

1This property could be relaxed to allow a proxy function g : S`p Ñ R being convex, where gpAq ď gpBq ô
fpAq ď fpBq.
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Algorithm 1 The projected entropic mirror descent algorithm for solving Eq. (2.5).

Require: function minω rF pωq defined in Eq (2.5); T number of iterations, step size rules tηtu
1: ωp0q “ p1{n, ¨ ¨ ¨ , 1{nq; Ź initialization
2: for tÐ 0 to T ´ 1 do
3: Compute subgradient gptq P B rF pωptqq;
4: Update: ωpt`1{2q

i 9ω
ptq
i expt´ηtg

ptq
i u, normalized so that

řn
i“1 ω

pt`1{2q
i “ 1;

5: Projection: ωpt`1q Ð BOXSIMPLEXPROJECTpωpt`1{2q, b{kq;
6: end for
7: return pω :“ 1

T

řT´1
t“0 ω

ptq.

2. Monotonicity: If A ĺ B then fpAq ě fpBq;
3. Reciprocal multiplicity: fptAq “ t´1fpAq for all t ą 0 and A P S`p .
It can be verified that all A, D, T, E, V and G-optimality are regular. Note that for D-

optimality the proxy function gDpΣq “ ´ log detpΣq is considered to satisfy the convexity prop-
erty.

2.2 The continuous relaxation framework
A straightforward solution to the combinatorial optimization problem mentioned in Eq. (2.3) is
to enumerate in brute force all

`

n
k

˘

possible solutions of s P t0, 1uk. Such an approach would be
however too computationally expensive and inadequate for even moderately sized design pools.

An alternative approach, which is adopted as the main algorithmic framework in this chapter,
is to consider a continuous relaxation to the discrete optimization problem in Eq. (2.3):

π˚ P arg min
π
F pπq “ arg min

π1,¨¨¨ ,πn
f

˜

n
ÿ

i“1

πixix
J
i

¸

s.t. 0 ď πi ď b,
n
ÿ

i“1

πi ď k. (2.4)

It should be noted that any feasible solution to the original discrete optimization problem (2.3)
is also feasible for the continuously relaxed program in Eq. (2.4), and hence F pπ˚q ď F ps˚q
always holds. In addition, thanks to the first property in Definition 2, any regular optimality
criterion f leads to a continuous program in Eq. (2.4) with a convex objective and a convex
and compact feasibility region. In the rest of this section we present two efficient approaches
to optimize Eq. (2.4): the first approach formulates Eq. (2.4) as a semi-definite programming
(SDP), which can be provably solved in polynomial time (Vandenberghe & Boyd, 1996); the
second approach uses entropic mirror descent (Beck & Teboulle, 2003) to solve Eq. (2.4), which
is practically efficient.

2.2.1 The semidefinite programming (SDP) approach

For π P Rn define Apπq “
řn
i“1 πixix

J
i , which is a p ˆ p positive semidefinite matrix. By

definition, fpπ;Xq “
řp
j“1 e

J
j Apπq

´1ej , where ej is the p-dimensional vector with only pth
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coordinate being 1. Subsequently, Eq. (2.4) is equivalent to the following SDP problem:

min
π,t

p
ÿ

j“1

tj subject to 0 ď πi ď b,
n
ÿ

i“1

πi ď k, diagpB1, ¨ ¨ ¨ , Bpq ľ 0,

where

Bj “

„

Apπq ej
eJj tj



, j “ 1, ¨ ¨ ¨ , p.

Global optimal solution of an SDP can be computed in polynomial time (Vandenberghe &
Boyd, 1996). However, this formulation is not intended for practical computation because of
the large number of variables in the SDP system. First-order methods such as projected gradient
descent is a more appropriate choice for practical computation.

2.2.2 The entropic mirror descent approach

We first note that Eq. (2.4) can be re-formulated as

min
ω

rF pωq :“ min
ω
f

˜

n
ÿ

i“1

ωixix
J
i

¸

s.t. 0 ď ωi ď b{k,
k
ÿ

i“1

ωi “ 1, (2.5)

by the change of variables ωi “ πi{k and noting that the
řn
i“1 πi ď k constraint in Eq. (2.4) must

bind, meaning that the optimal solution π˚ must satisfy
řn
i“1 π

˚
i “ k.

The entropic mirror descent (Beck & Teboulle, 2003) is a classical algorithm that takes into
account the geometry of high-dimensional probabilistic simplex to efficiently solve constrained
convex optimization problems. At a high level, entropic mirror descent uses the Kullbeck-Leibler
(KL) divergence

ř

i xi logpxi{yiq as the Bregman divergence, whose proximal operator can be
evaluated in closed form as multiplicative weight updates.

We describe in Algorithm 1 how (projected) entropic mirror descent is applied to solve pro-
gram 2.5. As our problem has an extra box constraint ωi ď 1{k, we present in Algorithm 2 a
simple algorithm that computes such projection in Opn log nq time and the KL divergence. The
projection algorithm is (in principle similar to but) much simpler than existing algorithms that
compute projections onto simplex or L1 balls (Condat, 2015; Duchi et al., 2008).

2.3 Rounding techniques

In the previous section we described a continuous relaxation of the original discrete optimization
problem, and briefly explained how the continuous relaxation can be solved efficiently to obtain
a (near) optimal continuous solution π˚ P r0, 1sn. In this section we describe various strategies
of “rounding” the continuous solution π˚ to a discrete one s, and prove rigorous approximation
guarantees for these rounding techniques.
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Algorithm 2 Projection onto the probabilistic simplex with box constraint

Require: ω P ∆n, parameter b P r1{n, 1s. Ź ∆n “ tx P Rn : xi ě 0,
ř

i xi “ 1u
Ensure: an output ω1 P ∆n such that }ω1}8 ď b. Ź ω1 “ arg minyP∆n,yiďb KLpy}ωq

Ź where KLpy}ωq :“
ř

i yi log yi
ωi

1: Sort ω in descending order: ω1 ě ω2 ě ¨ ¨ ¨ ě ωn ą 0;
2: if ω1 ď b then return ω;
3: KL1 Ð b logpb{ω1q, Z1 Ð 1´ ω1, KLopt Ð 8, ηopt Ð 0, and Copt Ð 0;
4: for q Ð 2 to n do
5: C Ð p1´ bpq ´ 1qq{Zq´1;
6: if C ą 0 and Cwq ď b and

`

KLq´1 ` C logpCq ¨ Zq´1 ď KLopt

˘

then
7: KLopt Ð KLq´1 ` C logpCq ¨ Zq´1, ηopt Ð ωq, Copt Ð C;
8: end if
9: KLq Ð b logpb{ωqq, Zq Ð Zq´1 ´ ωq;

10: end for
11: Set ω1i Ð b if ωi ě ηopt, and ω1i Ð Coptωi if ωi ă ηopt;
12: return ω1.

Algorithm 3 Sampling based experiment selection.
Input: X P Rnˆp, optimal solution π˚, target subset size k.
Output: pS Ď rns, a selected subset of size at most k.
Initialization: t “ 0, S0 “ H, R0 “ H.
1. With replacement: sample it „ P p1q; set wt “ rπ˚it{pkp

p1q
it
qs;

Without replacement: pick random it R Rt´1; sample wt „ Bernoullipkp
p2q
it
q.

2. Update: St “ St´1 Y twt repetitions of itu, Rt “ Rt´1 Y titu.
3. Repeat steps 1 and 2 until at some t “ T , |ST`1| ą k or RT`1 “ rns. Output pS “ ST .

2.3.1 Sampling based techniques
Perhaps the simplest idea of rounding π˚ into a discrete solution is to sample according to an
appropriately normalized categorical distribution based on π˚. More specifically, define Σ˚ :“
XJdiagpπ˚qX “

řn
i“1 π

˚
i xix

J
i and

P p1q : p
p1q
j “ π˚j x

J
j Σ´1

˚ xj{p, with replacement (b “ k);

P p2q : p
p2q
j “ π˚j {k, without replacement pb “ 1q.

Note that both tpp1qj u
n
j“1 and tpp2qj u

n
j“1 sum to one because

řn
j“1 π

˚
j “ k and

řn
j“1 π

˚
j x
J
j Σ´1

˚ xj “

trpp
řn
j“1 π

˚
j xjx

J
j qΣ

´1
˚ q “ trpΣ˚Σ

´1
˚ q “ p.

Pseudo-codes of the sampling procedure are given in Algorithm 3. The sampling procedure is
easy to understand in an asymptotic sense: it is easy to verify that EXJ

itXit “ XJdiagpπ˚{kqX

and Erwits “ 1, for both with and without replacement settings. Note that }pp2qit }8 ď 1{k by
feasibility constraints and hence Bernoullipkp

p2q
it
q is a valid distribution for all it P rns. For the

with replacement setting, by weak law of large numbers, XJ
pS
X

pS

p
Ñ XJdiagpπ˚qX as k Ñ 8
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Algorithm 4 Greedy experiment selection.
Input: X P Rnˆp, Initial subset S0 Ď rns, target size k ď |S0|.
Output: pS Ď rns, a selected subset of size k.
Initialization: t “ 0.
1. Find j˚ P St such that trrpXJ

Stztj˚u
XStztj˚uq

´1s is minimized.
2. Remove j˚ from St: St`1 “ Stztj

˚u.
3. Repeat steps 1 and 2 until |St| “ k. Output pS “ St.

and hence trrpXJ
SXSq

´1s
p
Ñ fpπ˚;Xq by continuous mapping theorem.

The following theorem provides a rigorous, finite-sample statement of the above intuition:
Theorem 1. Suppose the following conditions hold:

with replacement : p log k{k “ Op1q;

without replacement : }Σ´1
˚ }2κpΣ˚q}X}

2
8 log p “ Op1q.

Then with probability at least 0.8 the subset pS output by Algorithm 3 satisfies

F ppSq ď Op1q ¨ min
}s}1ďk,}s}8ďb,sPNn

F psq, b P t1, ku

for all regular criteria F .
The Op1q approximation ratio in Theorem 1 can be improved to an p1` εq-approximation if

“oversampling” is allowed. Interested readers are referred to Sec. 3.2 of Wang et al. (2017) for
details of such an improvement.

2.3.2 Greedy removal techniques for A-optimality

In this section we consider a greedy removal procedure outlined in Algorithm 4. The procedure is
specifically for the A-optimality criterion fApΣq “ trpΣ´1q and the without replacement (b “ 1)
setting.

Built upon a result from Avron & Boutsidis (2013) and an observation on the Karush-Kuhn-
Tucker (KKT) conditions of the optimization problem in Eq. (2.4), we have the following result:
Theorem 2. Let pS be the output of Algorithm 4 with initial subset S0 “ ti P rns : π˚i ą 0u. If
k ą p and txiuni“1 are independently sampled from continuous densities, then with probability 1

FAppSq ď

ˆ

1`
ppp` 1q

2pk ´ p` 1q

˙

¨ min
}s}1ďk,}s}8ď1,sPNn

FApsq.

Under a slightly stronger condition that k ą 2p, the approximation ratio 1` ppp`1q
2pk´p`1q

can be
simplified to 1`Opp2{kq. In addition, the approximation ratio is 1` op1q if p2{k Ñ 0, meaning
that near-optimal experiment selection is achievable with computationally tractable methods if
Opp2q design points are allowed in the selected subset.
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2.3.3 Greedy swapping techniques
In this section we introduce a general-purpose greedy swapping technique that applies to all
regular optimality criteria.

Pre-processing The first step of our technique is a pre-processing “whitening” step. Define
W :“

řn
i“1 π

˚
i xix

J
i . The pre-processing step is to whiten the design points txiuni“1 by taking

rxi :“ W´1{2xi. (2.6)

Note that after pre-processing, the transformed data points trxiuni“1 satisfies
řn
i“1 π

˚
i rxirx

J
i “ Ipˆp,

meaning that they are “whitened” to have identity sample covariance, and hence the name.

Potential functions The main component of our proposed rounding algorithm is a carefully
designed potential function φpu, v;Zq, which measures contributions to the least eigenvalue of a
p-dimensional positive semi-definite matrix Z by swapping design points u and v.

Fix hyper-parameter α ą 0, whose values will be discussed in the next section. For any
p-dimensional positive semi-definite matrix Z define AZ :“ pcIpˆp ` αZq´2 where c P R is
the unique real number such that trpAZq “ 1. The potential function φpu, v;Zq for any pairs of
p-dimensional vectors u, v P Rd are then defined as

φpu, v;Zq “ φ`pu;Zq ´ φ´pv;Zq (2.7)

where

φ`pu;Zq “
uJAZu

1` 2αuJA
1{2
Z u

and φ´pv;Zq “
vJAZv

1´ 2αvJA
1{2
Z v

. (2.8)

While the definitions of the potential function φ seems arbitrary, its form has deep roots
in online matrix games. More specifically, the form of the intermediate matrix AZ “ pcI `
αZq´2, trpAZq “ 1 corresponds to updates rules in a Follow-The-Regularized-Leader (FTRL)
(McMahan, 2011) with the matrix `1{2-regularizer ψpAq “ ´2trpA1{2q, first considered by Allen-
Zhu et al. (2015) for a related spectral sparsification problem. The potential function φ then falls
naturally from a regret analysis of FTRL type policies in online matrix games, summarized in
the following lemma:
Lemma 1. For any p-dimensional vectors tut, vtuTt“1 and fixed positive-semidefinite matrix Z0,
define Zt :“ Z0 `

řt
t1“1 ut1u

J
t1 ´ vt1v

J
t1 . If further vJt A

1{2
Zt´1

vt ă 1{2α holds for all t, then

λminpZT q ě
T
ÿ

t“1

φput, vt;Zt´1q ´
2
?
p

α
. (2.9)

Algorithm and approximation guarantees The lower bound of least eigenvalues in Lemma
1 immediately suggests a greedy swapping algorithm, which starts with an arbitrary subset S0 Ď

rns of size K and repeatedly find i P S0, j R S0 for “swapping” so as to maximize φprxj, rxi;Zq,
where Z “

ř

`PS rx`rx
J
` .
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Algorithm 5 A swapping algorithm for rounding

1: Input: design points txiuni“1, optimal continuous solution π˚, budget k, desired accuracy ε.
2: αÐ

?
p{ε; Ź configuration of hyper-parameters

3: Compute rxi “ W´1{2xi where W “
řn
j“1 π

˚
j xjx

J
j ; Ź the whitening step

4: S0 Ď rns an arbitrary subset of size k and tÐ 1; Ź initialization
5: while λminp

ř

iPSt´1
rxirx

J
i q ď 1´ 3ε do

6: ComputeAZt´1 “ pctI`αZt´1q
´2 such that trpAZt´1q “ 1, where Zt´1 “

ř

iPSt´1
rxirx

J
i ;

7: Find it P St´1, rx
J
itA

1{2
Zt´1

rxit ă 1{2α that minimizes φ´prxit ;Zt´1q;
8: Find jt R St´1 that maximizes φ`prxjt ;Zt´1q;
9: Swapping update: St “ St´1 Y tjtuztitu, and tÐ t` 1;

10: end while
11: return ps P t0, 1un where psi “ 1 iff i P ST .

Detailed pseudo-codes of this greedy swapping procedure is given in Algorithm 5. Note that
the pair it P St´1, jt R St´1 that maximizes φprxjt , rxit ;Zt´1q can be found in Opn` kq instead of
Opnkq time by separately maximizing and minimizing φ`prxjt ;Zt´1q and φ´prxit ;Zt´1q as shown
in Steps 6 and 7 in Algorithm 5, because the potential φ decomposes additively. In step 5 of
Algorithm 5, the unique real number ct P R such that trpAZt´1q “ 1 can be found by a binary
search, because trrpctI ` αZt´1q

´2s is a monotonically decreasing function in ct.
The following theorem gives approximation guarantees of Algorithm 5 when k is not too

small compared with p.
Theorem 3. Suppose k ě 5p{ε2 for some ε P p0, 1{6s. Then for any regular f , ps P t0, 1un output
by Algorithm 5 has size

řn
i“1 psi ď k and satisfies

F ppsq ď p1` 6εqF ps˚q “ p1` 6εq max
sPt0,1un,}s}1ďk

F psq.

2.4 Application: 3D lightweight structure optimization
We consider an application of our method to a 3D lightweight structure design problem. Most
results in this section appeared in (Wang et al., 2018) with more details.

2.4.1 Background
3D lightweight structure design is the question of carefully distributing material mass in com-
plicated 3D structures so that the resulting object has sufficient strength to withstand everyday
use. An important task is then to quantify the structural performance of an object under the
external forces it may experience during its use. Figure 2.1 from (Ulu et al., 2017) gives an
intuitive illustration of the performance of structures under external forces applied at different
locations, measured by stress distributed on the rest of the structure among which the maximum
stress defines the performance of structures under given external forces.
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Figure 2.1: Stress distributions on designed structures under external forces.

Suppose external forces can be applied on n possible locations for a specific structure. For
each location i P rns, the stress distribution as well as the maximum stress suffered by an unit
amount of external force can be computed by an accurate yet time consuming finite element
analysis (FEA) method. As each external force location i P rns requires an independent FEA
run, it is very desirable to select a few “representative” locations S Ď rns, |S| ď k ! n and
estimate the maximum stress outcomes of the other force locations not selected in S.

This “location selection” problem fits well within the experimental design framework con-
sidered in this paper, and in the next two paragraphs we explain how to apply our developed
algorithm as well as its experimental performances.

2.4.2 Method
LetG be a graph with n vertices, representing the spatial affinity of the n possible force locations
on a structure surface. The readers are referred to (Ulu et al., 2017; Wang et al., 2018) for details
of the construction of G. Let L be the graph Laplacian matrix of G, and X P Rnˆp be the top-p
eigenvectors of the graph Laplacian L. A linear regression model is used to model the maximum
stress yi induced by an unit external force applied at location i P rns (corresponding to xi P Rd

in the top eigenvectors matrix X), as

yi “ xJi β0 ` ξi, (2.10)

where β0 is a p-dimensional unknown regression model and tξiuni“1 are noise variables.
To select a subset S Ď rns, |S| ď k of locations, we use the algorithm proposed in the

previous sections to solve the discrete optimization problem in Eq. (2.4), restated below:

mins f
`
řn
i“1 sixix

J
i

˘

s.t. si P t0, 1u,
řn
i“1 si ď k.

The selected subset S is then chosen as all locations with si “ 1, and FEA analysis on these
force locations is carried out to obtain their corresponding induced maximum stress yi. The
regression model β0 is then estimated by ordinary least squares pβ “ p

ř

iPS xix
J
i q
´1p

ř

iPS yixiq,
and predictions on the other external force locations are produced by pyi “ xJi

pβ for i R S. The
force locations i P rns are then ranked in descending order according to tpyiuni“1, and FEA analysis
is computed again on the top ranked force locations to determine the final location i˚ P rns that
yields the largest stress response yi˚ . More details of our algorithmic pipeline is given in (Wang
et al., 2018).
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Figure 2.2: Example test structures with complex geometries. Fixed boundary conditions and
contact regions are indicated in blue and red, respectively.

2.4.3 Experimental settings
We evaluate the performance of our algorithm on three test structures (FERTILITY, ROCK-
INGCHAIR and SHARK) illustrated in Fig. 2.2. Descriptions and some basic statistics of the
considered structures are given in (Wang et al., 2018).

In our experiments, we consider 5 methods to sample the force locations subset S Ď rns,
|S| ď k. We compare our proposed algorithm (abbreviated as GREEDY) with baseline meth-
ods UNIFORM and LEVSCORE, as well as the previous work K-MEANS (Ulu et al., 2017) and
SAMPLING (Wang et al., 2017).

The performance of an algorithm is evaluated by the smallest integer m required so that the
top-m ranked lists according to tpyiuni“1 include the external force location i˚ P rns that actually
leads to the maximum stress a structure suffers.

2.4.4 Results and discussion
Table 2.1 reports the performance (m needed to cover i˚ P rns leading to maximum stress) of
our algorithm and its competitors under variance k settings for all three different structures. In
Fig. 2.4, we plot the sub-sampled force locations (i.e., S) of our proposed algorithm for k “ 200
point. We provide the samples obtained by the K-MEANS algorithm in Ulu et al. (2017) for
comparison. The difference in the sampling patterns between GREEDY and K-MEANS are quite
obvious from the figures.

2.5 Extensions
Our proposed methodologies can be further extended, to applications on generalized linear mod-
els, transfer learning and quantized linear regression.

2.5.1 Generalized linear models
In a generalized linear model µpxq “ ErY |xs satisfies gpµpxqq “ η “ xJβ0 for some known link
function g : RÑ R. Under regularity conditions (Van der Vaart, 1998), the maximum-likelihood
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Table 2.1: Results for the three test structures. Numbers in each cell are the smallest m such that
the top ranked m force locations include the actual location i˚ P rns leading to maximal stress.
Randomized algorithms (UNIFORM, LEVSCORE and SAMPLING) are run for 10 independent
trials and the median performance is reported. Best performing settings are indicated in bold.

k “ 25 50 100 150 200 250 300 Total FEAs pk `mq
Fertility UNIFORM 316.5 149 78.5 37.5 98.5 42.5 39 178.5 (k “ 100)

LEVSCORE 252.5 54.5 73.5 68.5 42.5 31 13.5 104.5 (k “ 50)
K-MEANS 237 25 61 82 57 17 16 75 (k “ 50)
SAMPLING 210.5 148.5 51 30 35.5 34 26.5 151 (k “ 100)
GREEDY 12 26 13 7 11 25 33 37 (k “ 25)

RockingChair UNIFORM 716 857 385.5 42 135.5 269.5 36 192 (nFL “ 150)
LEVSCORE 764.5 208.5 36 36 36 36 36 136 (k “ 100)
K-MEANS 4013 4400 4573 4301 4320 4620 4757 4038 (k “ 25)
SAMPLING 672.5 282 38.5 38 38 36 36 138.5 (k “ 100)
GREEDY 36 35 208 35 36 36 36 61 (k “ 25)

Shark UNIFORM 585 384 141.5 208.5 20 9 9.5 220 (nFL “ 200)
LEVSCORE 478.5 9 9 9 9 9 9 59 (nFL “ 50)
K-MEANS 133 102 9 9 9 9 9 109 (nFL “ 100)
SAMPLING 963.5 87 9 9 9 9 9 109 (nFL “ 100)
GREEDY 9 171 9 9 9 9 9 34 (nFL “ 25)

estimator pβn P argmaxβt
řn
i“1 log ppyi|xi; βqu satisfies E}pβn´β0}

2
2 “ p1`op1qqtrpIpX, β0q

´1q,
where IpX, β0q is the Fisher’s information matrix:

IpX, β0q “ ´

n
ÿ

i“1

E
B2 log ppyi|xi; β0q

BβBβJ
“ ´

n
ÿ

i“1

ˆ

E
B2 log ppyi; ηiq

Bη2
i

˙

xix
J
i . (2.11)

Here both expectations are taken over y conditioned on X and the last equality is due to the
sufficiency of ηi “ xJi β0. The experiment selection problem is then formulated to select a subset
S Ď rns of size k, either with or without duplicates, that minimizes trpIpXS, β0q

´1q.
It is clear from Eq. (2.11) that the optimal subset S˚ depends on the unknown parameter

β0, which itself is to be estimated. This issue is known as the design dependence problem for
generalized linear models (Khuri et al., 2006). One approach is to consider locally optimal
designs (Chernoff, 1953; Khuri et al., 2006), where a consistent estimate qβ of β0 is first obtained
on an initial design subset 2 and then qηi “ xJi

qβ is supplied to compute a more refined design
subset to get the final estimate pβ. With the initial estimate qβ available, one may apply transform
xi ÞÑ rxi defined as

rxi “

d

´E
B2 log ppyi; qηiq

Bη2
xi.

Note that under regularity conditions´EB
2 log ppyi;qηiq

Bη2i
“ E

´

B logpyi;qxiq
Bηi

¯2

is non-negative and hence

the square-root is well-defined. All our results are valid with X “ rx1, ¨ ¨ ¨ , xns
J replaced by

2Notice that a consistent estimate can be obtained using much fewer points than an estimate with finite approxi-
mation guarantee.
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Figure 2.3: Sampled force locations (S) using the K-MEANS algorithm (top row) versus our
proposed algorithm (bottom row), for k “ 100.

rX “ rrx1, ¨ ¨ ¨ , rxns
J for generalized linear models. Below we consider two generalized linear

model examples and derive explicit forms of rX .

Example 1: Logistic regression In a logistic regression model responses yi P t0, 1u are binary
and the likelihood model is

ppyi; ηiq “ ψpηiq
yip1´ ψpηiqq

1´yi , where ψpηiq “
eηi

1` eηi
.

Simple algebra yields

rxi “

d

eqηi

p1` eqηiq2
xi,

where qηi “ xJi
qβ.

Example 2: Poisson count model In a Poisson count model the response variable yi takes
values of non-negative integers and follows a Poisson distribution with parameter λ “ eηi “
ex
J
i β0 . The likelihood model is formally defined as

ppyi “ r; ηiq “
eηire´e

ηi

r!
, r “ 0, 1, 2, ¨ ¨ ¨ .

Simple algebra yields
rxi “

?
eqηixi,

where qηi “ xJi
qβ.
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Figure 2.4: Sampled force locations (S) using the K-MEANS algorithm (top row) versus our
proposed algorithm (bottom row), for k “ 200.

2.5.2 Transfer learning and Delta’s method
Suppose gpβ0q is the quantity of interest, where β0 P Rp is the parameter in a linear regression
model and g : Rp Ñ Rm is some known function. Let pβn “ pXJXq´1XJy be the OLS estimate
of β0. If ∇g is continuously differentiable and pβn is consistent, then by the classical delta’s
method (Van der Vaart, 1998) E}gppβnq´gpβ0q}

2
2 “ p1`op1qqσ

2trp∇gpβ0qpX
JXq´1∇gpβ0q

Jq “

p1 ` op1qqσ2trpG0pX
JXq´1q, where G0 “ ∇gpβ0q

J∇gpβ0q. If G0 depends on the unknown
parameter β0 then the design dependence problem again exists, and a locally optimal solution
can be obtained by replacing G0 in the objective function with qG “ ∇gpqβqJ∇gpqβq for some
initial estimate qβ of β0.

If qG is invertible, then there exists invertible p ˆ p matrix qP such that qG “ qP qPJ because qG
is positive definite. Applying the linear transform

xi ÞÑ rxi “ qP´1xi

we have that trrG0pX
JXq´1s “ trrp rXJ

rXq´1s, where rX “ rrx1, ¨ ¨ ¨ , rxns
J. Our results remain

valid by operating on the transformed matrix rX “ X qP´J.

Example: prediction error. In some application scenarios the prediction error }Z pβ ´ Zβ0}
2
2

rather than the estimation error }pβ´β0}
2
2 is of interesting, either because the linear model is used

mostly for prediction or component of the underlying model β0 lack physical interpretations.
Another interesting application is the transfer learning (Pan & Yang, 2010), in which the training
and testing data have different designs (e.g., Z instead of X) but share the same conditional
distribution of labels, parameterized by the linear model β0.

Suppose Z P Rmˆp is a known full-rank data matrix upon which predictions are seeked,
and define pΣZ “

1
m
ZJZ ą 0 to be the sample covariance of Z. Our algorithmic framework
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as well as its corresponding analysis remain valid for such prediction problems with transform
xi ÞÑ pΣ

´1{2
Z xi. In particular, the guarantees for the greedy algorithm and the with replacement

sampling algorithm remain unchanged, and the guarantee for the without replacement sampling
algorithm is valid as well, except that the }Σ´1

˚ }2 and κpΣ˚q terms have to be replaced by the
(relaxed) optimal sample covariance after the linear transform xi ÞÑ pΣ

´1{2
Z xi.

2.5.3 Quantized linear regression
Consider the noiseless linear signal model

y “ Xβ0 (2.12)

where X P Rnˆp is an exactly known design matrix, typically generated from certain physi-
cal procedures, and β0 P Rp is an unknown p-dimensional signal to be recovered. We restrict
ourselves to the “low-dimensional” setting p ă n. Unlike the classical linear regression model
ubiquitous in the statistics literature, the model in Eq. (2.12) is assumed to be noiseless as no
noise variables are included in the measurement model y “ Xβ0. Such a model arises in various
scenarios where the signal can be expressed or well-approximated by a small number of basis
elements. We mention one specific example from the framework of signal processing on graphs
(Sandryhaila & Moura, 2014; Shuman et al., 2013), which studies signals with an underlying
complex structure that is modeled by a graph such as measurements at nodes of a network. The
band-limited model for graph signals is a linear model in which the network node measurements
y are well represented by a linear model where the features are the eigenvectors of the graph
Laplacian or adjacency matrix corresponding to the smallest/largest eigenvalues, respectively.

The measurements of y, however, can only be made up to a total of k binary bits and hence
cannot be perfectly accurate. Such measurement-constrained settings are ubiquitous in statisti-
cal signal processing and machine learning applications, such as brain signal sensing (Lebedev
& Nicolelis, 2006), Internet of Things (Zhou et al., 2013) and electric power grids (Nabaee &
Labeau, 2012). It is therefore important to design intelligent bit allocation algorithms such that
the recovery of signal β0 is the most accurate possible subject to given bit measurement con-
straints.

The bit allocation problem in quantized linear regression can be formulated as follows:
Problem 1 (passive bit allocation). Given exactly measured design X P Rnˆp and a bit budget
k P N, k ě n, find a bit allocation k “ pk1, ¨ ¨ ¨ , knq P Nn, k1 ` ¨ ¨ ¨ ` kn ď k such that the mean
square error between the recovered signal pβk and the true signal β0 is mimimized.

Suppose a bit allocation strategy k “ pk1, ¨ ¨ ¨ , knq P Nn
` is given, such that

řn
i“1 ki ď n.

Let roundp¨q be the rounding operator towards the closest integer and U ra, bs be the uniform
distribution on interval ra, bs. The observed quantized value of yi “ xJi β0 with ki P N` binary
bits of measurement can then be expressed as

ryi “ 2´pki´1q
¨ round

”

2ki´1
´ yi
M
` δi

¯ı

(2.13)

where M :“ max1ďiďn |x
J
i β0| is a known bounded constant and δ „ U r´2´kiM, 2´kiM s is a

dithering variable that introduces additional stochasticity to the deterministic model (2.12). The
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dithering step de-couples the statistical dependency in the quantized error and is an important
concept in the signal processing literature (Schuchman, 1964). Note also that the most significant
bit in ryi indicates the sign of yi, and hence only pki´1q bits are available to measure the absolute
value of yi.

As the number of measure bits differ for different design points xi, the rounding (quantiza-
tion) error of each ryi also differs, making the quantized linear model (2.13) similar to a linear
regression model with heteroscedastic noise. Because the noise levels are known (controlled
by the bit allocation strategy k directly), a weighted Ordinary Least Squares (OLS) estimator is
reasonable for the recovery of β0 which we define as follows:

pβk P argminβPRp
ÿ

i:kią0

4ki`1
pryi ´ x

J
i βq

2. (2.14)

The following lemma upper bounds the mean square error of pβk. Its proof is a standard
analysis of weighted OLS estimators for heteroscedastic linear models.
Lemma 2. The weighted OLS estimator pβk satisfies

E}pβk ´ β0}
2
2 ďM2

¨ tr

»

–

˜

ÿ

i:kią0

4ki`1xix
J
i

¸´1
fi

fl . (2.15)

With Lemma 2, we can solve the following continuous optimization problem:

min
π“pπ1,¨¨¨ ,πnqPRn

tr

»

–

˜

n
ÿ

i“1

p4πi ´ 1qxix
J
i

¸´1
fi

fl πi ě 0, }π}1 ď k0. (2.16)

After the continuous optimization is solved, with (approximately) optimal solution π, a leverage
score sampling algorithm with careful rounding procedures can be used to obtain integer-valued
bit allocation. The pseudocode of the algorithm is listed in Algorithm 6, and some basic proper-
ties of Algorithm 6 are described in (Wang & Singh, 2018).

2.6 Summary and related works
The works presented in this section can be best summarized as computational aspects of ex-
perimental design. The main motivations behind the presented work is the (theoretical) compu-
tational intractability of many (optimal) experimental design problems, including even the very
basic ones such as A-optimal or D-optimal designs of discrete design point sets. Instead of study-
ing heuristic algorithms, our results fall under the framework of polynomial-time computability
in theory of computation, with rigorous approximation guarantees in terms of optimal design
objective values.

Experimental design is an old topic and we do not intend to provide a comprehensive litera-
ture review at this point. Interested readers should consult the classical references of (Chaloner
& Verdinelli, 1995; Fedorov, 1972; Pukelsheim, 2006). Related works reviewed in this section
focus primarily on computational aspects of the experimental design problem with rigorous the-
oretical/approximation guarantees.
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Algorithm 6 Bit allocation algorithm by leverage score sampling
1: Input: X P Rnˆp, quantization budget k, support size s ă k ´ p, number of repetitions B.
2: Output: pk P Nn satisfying k1 ` ¨ ¨ ¨ ` kn ď k.
3: Continuous optimization: solve for π˚, the optimal solution of Eq. (2.16).
4: Pre-conditioning: Σ˚ “

řn
i“1 4π

˚
i `1xix

J
i ; leverage scores `i “ xJi Σ´1

˚ xi.
5: for b P t1, ¨ ¨ ¨ , Bu do
6: Initialization: twpbqi u

n
i“1 “ 0.

7: Repeat for s times: sample it P rns from the categorical distribution Prrit “ is “

pi94π
˚
i `1`i and update wpbqit Ð w

pbq
it
` 4π

˚
i `1{pit .

8: Define allocation pkpbq: pkpbqi “

S

pk´sq logp1`w
pbq
i q

ř

j:w
pbq
j
ą0

logp1`w
pbq
j q

W

and pk
pbq
i “ 0 if wpbqi “ 0.

9: end for
10: Output pk in tpkpbquBb“1 with the smallest objective F ppk;Xq.

D-optimal designs Perhaps the most well-studied optimality criterion is D-optimality fDpΣq “
detpΣq1{p,‘ whose negative logarithm (i.e., log det Σ) is submodular, a property that sometimes
gives rises to 1 ´ 1{e approximation ratio using pipage rounding (Ageev & Sviridenko, 2004).
Unfortunately, log det Σ can be negative and thus pipage rounding could fail to provide a con-
stant relative approximation ratio with respect to detpΣq or detpΣq1{p. In (Bouhtou et al., 2010),
Bouhtou et al. proposed to maximize a function hpΣq :“ 1

p
trpΣqq for q P p0, 1s, and it satisfies

limqÑ0phpΣqq
´1{q “ fDpΣq. They showed that hpΣq is submodular and gave a p1 ´ 1{eq ap-

proximation to hpΣq for every q P p0, 1s using pipage rounding. This does not translate to any
bounded approximation ratio for fDpΣq because p1´ 1{eq´1{q is unbounded when q approaches
zero.

Summa et al. (2015) gave a polynomial-time algorithm for a related maximum volume sim-
plex (MVS) problem in computational geometry with an Oplog pq approximation ratio, which
was later improved to Op1q by Nikolov (2015); Nikolov & Singh (2016). Their results imply
an e approximation ratio in the special case of k “ p. On the other hand, Summa et al. (2015)
showed that there exists a constant c ą 1 such that polynomial-time c-approximation of the D-
optimality is impossible for the p “ k case, unless P “ NP. Therefore, additional assumptions
on k are necessary for the p1` εq-approximation regime we consider in this paper.

Concurrent and independent of our work, the works of (Singh & Xie, 2017) achieved p1`εq-
relative approximation for the D-optimality criteria under the weaker condition that k “ Ωpp{ε`
logpε´1q{ε2q. Their techniques are based on volume sampling of symmetric elementary func-
tions of matrix eigenvalues, and are less likely to be extendable to general optimality criteria
objectives. Indeed, Nikolov et al. (2018) proved a negative result showing that no continuous-
relaxation based method can possibly attain p1 ` εq approximation for the E-optimaliy unless
k “ Ωpp{ε2q, essentially showing our theoretical analysis is the best possible one can hope for.

A/V-optimal designs For the A-optimality criterion, Avron & Boutsidis (2013) proposed a
greedy algorithm with an approximation ratioOpn{kqwith respect to fp

řn
i“1 xix

J
i q. This ratio is
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tight for their algorithm in the worst case,3 Li et al. (2017a) further computationally accelerated
this greedy algorithm, and achieved similar approximation guarantees. Nikolov et al. (2018)
showed that the k “ Ωpp{ε ` logpε´1{ε2q condition is sufficient for p1 ` εq-approximation of
A/V-optimality as well.

Fast and subsampling least squares solvers There has been an increasing amount of work on
fast solvers for the general least-square problem minβ }y ´Xβ}22. Most of existing work along
this direction (Dhillon et al., 2013; Drineas et al., 2011; Raskutti & Mahoney, 2015; Woodruff,
2014) focuses solely on the computational aspects and do not consider statistical constraints such
as limited measurements of y. A convex optimization formulation was proposed in Davenport
et al. (2015) for a constrained adaptive sensing problem, which is a special case of our setting,
but without finite sample guarantees with respect to the combinatorial problem.

Popular subsampling techniques such as leverage score sampling (Drineas et al., 2008) were
studied in least square and linear regression problems (Chen et al., 2015a; Ma et al., 2015). None
of these methods achieve near minimax optimal statistical efficiency in terms of estimating the
underlying linear model β0, since the methods can be worse than uniform sampling which has a
fairly large approximation constant for general X .

Active regression Another related area is active learning (Chaudhuri et al., 2015; Hazan &
Karnin, 2015; Sabato & Munos, 2014), which is a stronger setting where feedback from prior
measurements can be used to guide subsequent data selection. Chaudhuri et al. (2015) analyzes
an SDP relaxation in the context of active maximum likelihood estimation.

2.7 Proofs

2.7.1 Proof of Theorem 1
The following lemma is key to the proof of Theorem 1.
Lemma 3. Define pΣ

pS “ XJ
pS
X

pS . Suppose the following conditions hold:

With replacement : p log T {T “ Op1q;

Without replacement : }Σ´1
˚ }2κpΣ˚q}X}

2
8 log p “ OpT {nq.

Then with probability at least 0.9 the following holds:

zJpΣ
pSz ě KT z

JΣ˚z, @z P Rp, (2.17)

where KT “ ΩpT {kq for with replacement and KT “ ΩpT {nq for without replacement.
We also need to relate conditions on T in Lemma 3 to interpretable conditions on subset

budget k:

3In the worst case, even the exact minimum min|S|ďk fp
ř

iPS xix
J
i q can be indeed Opn{kq times larger than

fp
řn
i“1 xix

J
i q (Avron & Boutsidis, 2013) different from the subset selection objective in Eq. (2.3). This worst-case

scenario may not always happen, but to the best our knowledge, their proof is tight in this worst case.
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Lemma 4. Let δ ą 0 be an arbitrarily small fixed failure probability. The with probability at
least 1´ δ we have that T ě δk for with replacement and T ě δn for without replacement.

Proof. For with replacement we have Er
řT
t“1wts “ T and for without replacement we have

Er
řT
t“1wts “ Tk{n. Applying Markov’s inequality on Prr

řT
t“1wt ą ks for T “ δk and/or

T “ δn we complete the proof of Lemma 4.

Combining Lemmas 3 and 4 with δ “ 0.1 and note that T ď k almost surely (because
wt ě 1), we prove Theorem 1.

The rest of this section is devoted to proving Lemma 3. We treat the with replacement and
without replacement settings separately.

Proof of the with replacement setting For the with replacement setting, we adopt the proof
strategy of Spielman & Srivastava (2011). Define Φ “ diagpπ˚q and Π “ Φ1{2XΣ´1

˚ XJΦ1{2 P

Rnˆn. The following proposition lists properties of Π:
Proposition 1 (Properties of projection matrix). The following properties for Π hold:

1. Π is a projection matrix. That is, Π2 “ Π.
2. RangepΠq “ RangepΦ1{2Xq.
3. The eigenvalues of Π are 1 with multiplicity p and 0 with multiplicity n´ p.
4. Πii “ }Πi,¨}

2
2 “ π˚i x

J
i Σ´1

˚ xi.

Proof. Proof of 1: By definition, Σ˚ “ XJΦX and subsequently

Π2
“ Φ1{2XΣ´1

˚ XJΦ1{2Φ1{2XΣ´1
˚ XJΦ1{2

“ Φ1{2XpXJΦXq´1XJΦXpXJΦXq´1Φ1{2

“ Φ1{2XpXJΦXq´1XJΦ1{2
“ Π.

Proof of 2: First note that RangepΠq “ RangepΦ1{2XΣ´1
˚ XJΦ1{2q Ď RangepΦ1{2Xq. For

the other direction, take arbirary u P RangepΦ1{2Xq and express u as u “ Φ1{2Xv for some
v P Rp. We then have

Πu “ Φ1{2XΣ´1
˚ XJΦ1{2u

“ Φ1{2XpXJΦXq´1XJΦ1{2Φ1{2Xv

“ Φ1{2Xv “ u

and hence u P RangepΠq.
Proof of 3: Because Σ˚ “ XJΦX is invertible, the nˆpmatrix Φ1{2X must have full column

rank and hence kerpΦ1{2Xq “ t0u. Consequently, dimpRangepΠqq “ dimpRangepΦ1{2Xqq “
p´dimpkerpΦ1{2Xqq “ p. On the other hand, the eigenvalues of Π must be either 0 or 1 because
Π is a projection matrix. So the eigenvalues of Π are 1 with multiplicity p and 0 with multiplicity
n´ p.

Proof of 4: By definition,

Πii “
a

π˚i x
J
i Σ´1

˚ xi
a

π˚i “ π˚i x
J
i Σ´1

˚ xi.
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In addition, Π is a symmetric projection matrix. Therefore,

Πii “ rΠ
2
sii “ ΠJi,¨Πi,¨ “ }Πi,¨}

2
2.

The following lemma shows that a spectral norm bound over deviation of the projection
matrix implies spectral approximation of the underlying (weighted) covariance matrix.
Lemma 5 (Spielman & Srivastava (2011), Lemma 4). Let Π “ Φ1{2XΣ´1

˚ XJΦ1{2 and W be an
nˆ n non-negative diagonal matrix. If }ΠWΠ´ Π}2 ď ε for some ε P p0, 1{2q then

p1´ εquJΣ˚u ď uJrΣ˚u ď p1` εqu
JΣ˚u, @u P Rp,

where Σ˚ “ XJΦX and rΣ˚ “ XJW 1{2ΦW 1{2X .
We next proceed to find an appropriate diagonal matrix W and validate Lemma 5. Define

rw˚j “ k{T ¨ w˚j “ π˚j {pTp
p1q
j q and let pΣT “

řT
t“1 rw˚itxitx

J
it . Because pΣT “

k
T
pΣ
pΣW

ĺ pΣ
pS , we

have that pΣ
pS ľ T

k
pΣT and hence zJpΣ

pSz ě
T
k
zJpΣT z for all z P Rp. Therefore, to lower bound

the spectrum of pΣ
pS it suffices to lower bound the spectrum of pΣT .

Define diagonal matrix ĂW as

ĂWjj “

řT
t“1 rw˚itIrit “ js

π˚j
, j “ 1, ¨ ¨ ¨ , n.

We have that rΣ˚ “ pΣT for this particular choice of W .
Lemma 6. For any ε ą 0,

Pr
”

}ΠĂWΠ´ Π}2 ą ε
ı

ď 2 exp

"

´C ¨
Tε2

p log T

*

, (2.18)

where C ą 0 is an absolute constant.

Proof. Define n-dimensional random vector v as 4

Pr

«

v “

d

T rw˚j
π˚j

Πj¨

ff

“ p
p1q
j , j “ 1, ¨ ¨ ¨ , n.

Let v1, ¨ ¨ ¨ , vk be i.i.d. copies of v and define At “ vtv
J
t . By definition, ΠW p1qΠ is equally

distributed with 1
k

řk
t“1At. In addition,

EAt “
n
ÿ

j“1

Tw˚j
π˚j

p
p1q
j Πj¨Π

J
j¨ “ Π2

“ Π,

4For those j with π˚j “ 0, we have by definition that pp1qj “ 0.
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which satisfies }EAt}2 “ 1, and

}At}2 “ }vt}
2
2 ď

ÿ

1ďjďn

T rw˚j
π˚j

}Πj¨}
2
2 “

ÿ

1ďjďn

1

p
p1q
j

}Πj¨}
2
2 ď sup

1ďjďn

p

xJj Σ´1
˚ xj

¨ xJj Σ´1
˚ xj “ p.

Applying Lemma 95 we have that

Pr
”

}ΠĂWΠ´ Π}2 ą ε
ı

ď 2 exp

"

´C ¨
Tε2

p log T

*

.

Set t “ Op1q and equate the right-hand side of Eq. (2.18) with Op1q. We then have

Pr
”

pΣT ľ Ωp1q ¨ pΣ˚

ı

“ Ωp1q if p log T {T “ Op1q.

Subsequently, under the condition that p log T {T “ Op1q, with probability at least 0.9 it holds
that

pΣ
pS ľ ΩpT {kq ¨ Σ˚,

which completes the proof of Lemma 3 for the with replacement setting.

Proof of the without replacement setting Define pΣ
pR “ XJ

RT
XRT “

řT
t“1 π

˚
itxitx

J
it . Condi-

tioned on RT , the subset pS “ ST is selected randomly as a subset of RT . We can then use matrix
concentration inequalities to upper bound the discrepancy between pΣ

pS and pΣ
pR.

More specifically, define independently distributed random matrices A1, ¨ ¨ ¨ , AT as

At “ pwt ´ π
˚
itqxitx

J
it , t “ 1, ¨ ¨ ¨ , T.

Note that wt is a random Bernoulli variable with Prrwt “ 1s “ kp
p2q
it
“ π˚it . Therefore, EAt “ 0.

In addition,
sup

1ďtďT
}At}2 ď sup

1ďjďn
}xj}

2
2 ď }X}

2
8 a.s.,

and
›

›

›

›

›

T
ÿ

t“1

EA2
t

›

›

›

›

›

2

“

›

›

›

›

›

T
ÿ

t“1

π˚itp1´ π
˚
itq}xit}

2
2xitx

J
it

›

›

›

›

›

2

ď }X}28}
pΣ

pR}2.

Noting that
řT
t“1At “

pΣ
pS ´

pΣ
pR and invoking Lemma 96, we have that

Pr
”

}pΣ
pS ´

pΣT }2 ą t
ˇ

ˇRT

ı

ď 2p ¨ exp

#

´
t2

3}pΣT }2}X}28 ` 2}X}28t

+

.

Setting t “ Op1q ¨ λminpΣT q we have that, if }pΣ´1
T }2κp

pΣT q}X}
2
8 log p “ Op1q, then with

probability at least 0.95 conditioned on pΣT

Ωp1q ¨ pΣT ĺ pΣ
pS ĺ Op1q ¨ pΣT . (2.19)
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It remains to establish spectral similarity between pΣT and T
n

Σ˚, a scaled version of Σ˚. Define
deterministic matrices A1, ¨ ¨ ¨ , An as

Aj “ π˚j xjx
J
j ´

1

n
Σ˚, j “ 1, ¨ ¨ ¨ , n.

By definition,
řn
j“1Aj “ 0 and

řT
t“1Aσptq “

pΣT ´
T
n

Σ˚, where σ is a random permutation from
rns to rns. In addition,

sup
1ďjďn

}Aj}2 ď
1

n
}Σ˚}2 ` sup

1ďjďn
}xj}

2
2 ď 2}X}28

and

T

n

›

›

›

›

›

n
ÿ

j“1

A2
j

›

›

›

›

›

2

ď
2T

n

˜
›

›

›

›

›

n
ÿ

j“1

pπ˚j q
2
}xi}

2
2xix

J
i

›

›

›

›

›

2

`
1

n2
}Σ˚}

2
2

¸

ď
2T

n

˜

}X}28

›

›

›

›

›

n
ÿ

j“1

π˚j xix
J
i

›

›

›

›

›

2

`
1

n2
}Σ˚}

2
2

¸

ď
2T

n

ˆ

}X}28}Σ˚}2 `
1

n2
}Σ˚}

2
2

˙

ď
4T

n
}X}28}Σ˚}2.

Invoking Lemma 97, we have that

Pr

„
›

›

›

›

pΣT ´
T

n
Σ˚

›

›

›

›

2

ą t



ď p exp

#

´t2
„

48T

n
}X}28}Σ˚}2 ` 8

?
2}X}28t

´1
+

.

Set t “ OpT {nq ¨ λminpΣ˚q. We then have that, if }Σ´1
˚ κpΣ˚q}X}

2
8 log p “ OpT {nq holds, then

with probability at least 0.95

ΩpT {nq ¨ Σ˚ ĺ pΣT ĺ OpT {nq ¨ Σ˚. (2.20)

Combining Eqs. (2.19,2.20) and noting that }pΣ´1
T }2 ď Op n

T
q}Σ´1

˚ }2, κpΣT q ď Op1qκpΣ˚q, we
complete the proof of Lemma 3 under the without replacement setting.

2.7.2 Proof of Theorem 2
We first extract the following lemma from (Avron & Boutsidis, 2013), which analyzes the perfor-
mance of the greedy removal algorithm used as a sub-routine in our Algorithm 4 when starting
from an arbitrary set S0.
Lemma 7. Suppose pS Ď rns of size k is obtained by running algorithm in Algorithm 4 with an
initial subset S0 Ď rns, |S0| ě k. Both pS and S0 are standard sets (i.e., without replacement).
Then

tr
“

pXJ
pS
X

pSq
´1
‰

ď
|S0| ´ p` 1

k ´ p` 1
tr
“

pXJ
S0
XS0q

´1
‰

.
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In (Avron & Boutsidis, 2013) the greedy removal procedure in Algorithm 4 is applied to the
entire design set S0 “ rns, which gives approximation guarantee trrpXJ

pS
X

pSq
´1s ď

n´p`1
k´p`1

trrpXJXq´1s.
This results in an approximation ratio of n´p`1

k´p`1
by applying the trivial bound trrpXJXq´1s ď

minsiPt0,1u,
ř

i siďk
F psq, which is tight for a design that has exactly k non-zero rows.

To further improve the approximation ratio, we consider applying the greedy removal proce-
dure with S0 equal to the support of π˚; that is, S0 “ tj P rns : π˚j ą 0u. Because }π˚}8 ď 1
under the without replacement setting, we have the following corollary:
Corollary 1. Let S0 be the support of π˚ and suppose }π˚}8 ď 1. Then

trrpXJ
pS
X

pSq
´1
s ď

}π˚}0 ´ p` 1

k ´ p` 1
F pπ˚q ď

}π˚}0 ´ p` 1

k ´ p` 1
¨ min
siPt0,1u,

ř

i siďk
F psq.

It is thus important to upper bound the support size }π˚}0. With the trivial bound of }π˚}0 ď n
we recover the n´p`1

k´p`1
approximation ratio by applying Figure 4 to S0 “ rns. In order to bound

}π˚}0 away from n, we consider the following assumption imposed on X:
Assumption 1. Define mapping φ : Rp Ñ R

ppp`1q
2 as φpxq “ pξijxpiqxpjqq1ďiďjďp, where xpiq

denotes the ith coordinate of a p-dimensional vector x and ξij “ 1 if i “ j and ξij “ 2 otherwise.
Denote rφpxq “ pφpxq, 1q P R

ppp`1q
2

`1 as the affine version of φpxq. For any ppp`1q
2

` 1 distinct
rows of X , their mappings under rφ are linear independent.

Assumption 1 is essentially a general-position assumption, which assumes that no ppp`1q
2

` 1
design points in X lie on a degenerate affine subspace after a specific quadratic mapping. Like
other similar assumptions in the literature (Tibshirani, 2013), Assumption 1 is very mild and
almost always satisfied in practice, for example, if each row of X is independently sampled from
absolutely continuous distributions.

We are now ready to state the main lemma bounding the support size of π˚.
Lemma 8. }π˚}0 ď k ` ppp`1q

2
if Assumption 1 holds.

The proof of Lemma 8 is based on an interesting observation into the properties of Karush-
Kuhn-Tucker (KKT) conditions of the optimization problem Eq. (2.4), which involves a linear
system with ppp`1q

2
` 1 variables. To contrast the results in Lemma 8 with classical rank/support

bounds in SDP and/or linear programming (e.g. the Pataki’s bound (Pataki, 1998)), note that the
number of constraints in the SDP formulation of Eq. (2.4) (see also Sec. 2.2.1) is linear in n, and
hence analysis similar to (Pataki, 1998) would result in an upper bound of }π˚}0 that scales with
n, which is less useful for our analytical purpose.

Let fpπ;λ, rλ, µq be the Lagrangian muliplier function of the without replacement formulation
(b “ 1) of Eq. (2.4):

fpπ;λ, rλ, µq “
n
ÿ

i“1

πixix
J
i ´

n
ÿ

i“1

λiπi `
n
ÿ

i“1

rλi

ˆ

πi ´
1

k

˙

` µ

˜

n
ÿ

i“1

πi ´ 1

¸

.

Here tλiuni“1 ě 0, trλiuni“1 ě 0 and µ ě 0 are Lagrangian multipliers for constraints πi ě 0,
πi ď 1 and

ř

i πi ď k, respectively. By KKT condition, Bf
Bπi

ˇ

ˇ

π˚
“ 0 and hence

´
Bf

Bπi

ˇ

ˇ

ˇ

ˇ

π˚
“ xJi Σ´2

˚ xi “ rλi ´ λi ` µ, i “ 1, ¨ ¨ ¨ , n,
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where Σ˚ “ XJdiagpπ˚qX is a pˆ p positive definite matrix.
Split the index set rns into three disjoint sets defined as A “ ti P rns : π˚i “ 1u, B “ ti P

rns : 0 ă π˚i ă 1u and C “ ti P rns : π˚i “ 0u. Note that }π˚}0 “ |A| ` |B| and |A| ď k.
Therefore, to upper bound }π˚}0 it suffices to upper bound |B|. By complementary slackness,
for all i P B we have that rλi “ λi “ 0; that is,

xJi Σ´2
˚ xi “ xφpxiq, ψpΣ

´2
˚ qy “ µ, @i P B, (2.21)

where φ : Rp Ñ Rppp`1q{2 is the mapping defined in Assumption 1 and ψp¨q takes the upper
triangle of a symmetric matrix and vectorizes it into a ppp´1q

2
-dimensional vector. Assume by

way of contradiction that |B| ą ppp ` 1q{2 and let x1, ¨ ¨ ¨ , xppp`1q{2`1 be arbitrary distinct
ppp`1q

2
` 1 rows whose indices belong to B. Eq. (2.21) can then be cast as a homogenous linear

system with ppp`1q
2

` 1 variables and equations as follows:

»

—

—

—

–

rφpx1q

rφpx2q
...

rφpxppp`1q{2`1q

fi

ffi

ffi

ffi

fl

„

ψpΣ´2
˚ q

´µ



“ 0.

Under Assumption 1, rΦ “ rrφpx1q; ¨ ¨ ¨ ; rφpxppp`1q{2`1qs
J is invertible and hence both ψpΣ´2

˚ q and
µ must be zero. This contradicts the fact that Σ´2

˚ is positive definite.

2.7.3 Proof of Lemma 1
To prove Lemma 1 we consider the following online matrix game: let ∆pˆp “ tA P Rpˆp :
A ľ 0, trpAq “ 1u be an action space that consists of PSD matrices of unit trace (a.k.a. density
matrices). Consider an iterative game for T iterations. At iteration t, the player chooses an
action At P ∆pˆp; afterwards, a loss matrix Ft is revealed and the player suffers loss xFt, Aty “
trpFJt Atq. The goal of the player is to minimize his/her regret:

RegretptAtuT´1
t“0 q :“

T´1
ÿ

t“0

xFt, Aty ´ min
UP∆pˆp

T´1
ÿ

t“0

xFt, Uy, (2.22)

which is the “excess loss” of tAtuT´1
t“0 compared to the single optimal action U P ∆pˆp in “hind-

sight” (knowing all the loss matrices tFtuT´1
t“0 ).

We immediately observe that the second term minUP∆pˆp

řT´1
t“0 xFt, Uy in (2.22) is precisely

the minimum eigenvalue of
řT´1
t“0 Ft. Hence, the task of lower bounding λminp

řT´1
t“0 Ftq can be

reduced to upper bounding the regret in Eq. (2.22).
A popular strategy to minimize regret for the player is Follow-The-Regularized-Leader (FTRL),

also known to be equivalent to Mirror Descent (MD) (McMahan, 2011). It specifies strategy At
for player at each round t “ 0, 1, . . . , T ´ 1 as follows:

At “ arg min
AP∆pˆp

t∆ψpAt´1, Aq ` αxFt´1, Ayu . (2.23)
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Above, α ą 0 is the learning rate, ψ : Rpˆp Ñ R is some differentiable regularizer function, and
∆ψpA,Bq “ ψpBq ´ ψpAq ´ x∇ψpAq, B ´ Ay is the so-called Bregman divergence function
associated with ψ.

Perhaps the most famous choice of ψ is the matrix entropy ψpAq “ xA, logA ´ Iy, and
the resulting MD strategy is referred to as matrix multiplicative weight updates (Arora & Kale,
2007). In this paper, to achieve better regret, we adopt the less famous `1{2-regularizer ψpAq “
´2trpA1{2q introduced in (Allen-Zhu et al., 2015), and call the resulting MD strategy the `1{2

strategy.
Remark 1. The vector version of this `1{2 strategy was first introduced in (Audibert et al., 2011)
to obtain optimum regret for combinatorial prediction games. The matrix generalization of this
`1{2 strategy is non-trivial, and leads to optimum regret for problems related to graph sparsifi-
cation (Allen-Zhu et al., 2015), and faster algorithms for online eigenvector (Allen-Zhu & Li,
2017).

The following proposition gives an alternative closed form for the `1{2 strategy. Its proof is
by careful manipulations of the definition of At, and has implicitly appeared in Allen-Zhu et al.
(2015). We include its proof for the sake of completeness, later in this section.
Proposition 2 (closed form `1{2 strategy). Assume without loss of generality that A0 “ pc0I `
αZ0q

´2 for some c0 P R and symmetric matrix Z0 such that c0I ` αZ0 ą 0. Then,

At “

˜

ctI ` αZ0 ` α
t´1
ÿ

`“0

F`

¸´2

, t “ 1, 2, . . . , (2.24)

where ct P R is the unique constant that ensures ctI ` αZ0 ` α
řt´1
`“0 F` ą 0 and trpAtq “ 1.

At a high level, if Z0 “ 0 were the zero matrix, thenA0 “
I
?
p

would be a multiple of identity.
This corresponds to the standard way to initialize the player’s strategy in online learning, and
was used in Allen-Zhu et al. (2015). In this paper, we need this more general Z0 to support our
proposed swapping algorithm.

If each loss matrix Ft can be rank-2 decomposed as Ft “ utu
J
t ´ vtv

J
t , then we prove the

following lemma which upper bounds the total regret of the `1{2 strategy:
Lemma 9 (main regret lemma). Suppose Ft “ utu

J
t ´ vtv

J
t for vectors ut, vt P Rp, and

A0, . . . , AT´1 P ∆pˆp are defined according to the `1{2 strategy with some learning rate α ą 0.
Then, as long as αxA1{2

t , vtv
J
t y ă 1{2 for all t, we have for any U P ∆pˆp,

´

T´1
ÿ

t“0

xFt, Uy ď
T´1
ÿ

t“0

˜

´
xAt, utu

J
t y

1` 2αxA
1{2
t , utuJt y

`
xAt, vtv

J
t y

1´ 2αxA
1{2
t , vtvJt y

¸

`
∆ψpA0, Uq

α
. (2.25)

“

T´1
ÿ

t“0

´φ`put;Ztq ` φ´pvt;Ztq `
∆ψpA0, Uq

α
. (2.26)

Remark 2. To better see why Lemma 9 is a bound on regret (2.22), we rearrange the two sides:

T´1
ÿ

t“0

xFt, At ´ Uy ď 2α
T´1
ÿ

t“0

˜

xAt, utu
J
t y ¨ xA

1{2
t , utu

J
t y

1` 2αxA
1{2
t , utuJt y

`
xAt, vtv

J
t y ¨ xA

1{2
t , vtv

J
t y

1´ 2αxA
1{2
t , vtvJt y

¸

`
∆ψpA0, Uq

α
.
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Our proof of Lemma 9 involves a non-classical regret analysis designed for the matrix `1{2

strategy. It is based on the closed-form expressions in Eq. (2.24). Note that a variant of Lemma
9, but only for matrices Ft “ utu

J
t (thus of rank 1) was originally presented in Theorem 3.2

of (Allen-Zhu et al., 2015). The involvement of the extra ´vtvJt components is, however, a
non-trivial extension and brings in extra technical difficulties.

Proof of Lemma 9. To prove this lemma we consider an equivalent “2-step” description of the
mirror descent procedure:

rAt “ arg min
Aľ0

t∆ψpAt´1, Aq ` αxFt´1, Ayu ; At “ arg min
AP∆pˆp

∆ψp rAt, Aq.

By the so-called “tweaked analysis” of mirror descent (Rakhlin, 2009; Zinkevich, 2003), the
matrix At defined above is identical to its original definition of arg minAP∆pˆpt∆ψpAt´1, Aq `

αxFt´1, Ayu. This can also be verified by writing rAt explicitly using the following claim, and
verifying that At (in its closed form by Proposition 2) is indeed a minimizer of ∆ψp rAt, Aq over
A P ∆pˆp by taking its gradient.

Proposition 3. We have rAt “ pA
´1{2
t´1 ` αFt´1q

´2.

The proof of Proposition 3 is given later. Since∇ψp rAtq ´∇ψpAt´1q ` αFt´1 “ 0 as shown
in the proof above, we have (by defining rA0 “ A0)

xαFt´1, At´1 ´ Uy “ x∇ψpAt´1q ´∇ψp rAtq, At´1 ´ Uy

“ ∆ψpAt´1, Uq ´∆ψp rAt, Uq `∆ψp rAt, At´1q

ď ∆ψp rAt´1, Uq ´∆ψp rAt, Uq `∆ψp rAt, At´1q. (2.27)

Above, the second equality and the last inequality follow from the “three-point” equality and
the generalized Pythagorean theorem of Bregman divergence (see for example, Lemma 2.1 of
Allen-Zhu et al. (2015)). Expanding ∆ψp rAt, At´1q by its definition gives

∆ψp rAt, At´1q “ ψpAt´1q ´ ψp rAtq ´ x∇ψp rAtq, At´1 ´ rAty

“ ´2trpA
1{2
t´1q ` 2trp rA

1{2
t q ` x

rA
´1{2
t , At´1 ´ rAty

“ x rA
´1{2
t , At´1y ` trp rA

1{2
t q ´ 2trpA

1{2
t´1q

“ xA
´1{2
t´1 ` αFt´1, At´1y ` trp rA

1{2
t q ´ 2trpA

1{2
t´1q

“ αxFt´1, At´1y ` trp rA
1{2
t q ´ trpA

1{2
t´1q. (2.28)

Combining Eqs. (2.27,2.28) and telescoping from t “ 1 to t “ T we obtain

´α
T´1
ÿ

t“0

xFt, Uy ď ∆ψpA0, Uq ´∆ψp rAT , Uq `
T´1
ÿ

t“0

trp rA
1{2
t`1q ´ trpA

1{2
t q

ď ∆ψpA0, Uq `
T´1
ÿ

t“0

trp rA
1{2
t`1q ´ trpA

1{2
t q, (2.29)
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where the second inequality holds because Bregman divergence ∆ψp rAT , Uq is always non-
negative.

It remains to upper bound the “consecutive difference” trp rA
1{2
t`1q ´ trpA

1{2
t q. Let Pt “?

αrut vts P Rpˆ2 and J “ diagp1,´1q P R2ˆ2, so we have αFt “ PtJP
J
t . By the defini-

tion of rA
1{2
t`1 and the Woodbury formula5,

trp rA
1{2
t`1q “ tr

”

pA
´1{2
t ` PtJP

J
t q
´1
ı

“ tr
”

A
1{2
t ´ A

1{2
t PtpJ ` P

J
t A

1{2
t Ptq

´1PJt A
1{2
t

ı

. (2.30)

It is crucial to spectrally lower bound the core 2ˆ 2 matrix pJ `PJt A
1{2
t Ptq

´1{2 in the middle of
Eq. (2.30). For this purpose, we claim that

Proposition 4. Suppose PJt A
1{2
t Pt “ rb d; d cs P R2ˆ2 and 2αxA

1{2
t , vtv

J
t y ă 1. Then

pJ ` PJt A
1{2
t Ptq

´1
“

ˆ

J `

„

b d
d c

˙´1

ľ

ˆ

J `

„

2b 0
0 2c

˙´1

.

Proposition 4 is trivially true if J ľ 0, but becomes less obvious when J has negative eigen-
values. In fact, Proposition 4 is not universally true for any matrices of the form PAPJ, and
specifically requires the condition that 2αxA

1{2
t , vtv

J
t y ă 1. We defer the proof of Proposition 4

later.
With Proposition 4, the consecutive gap trp rA

1{2
t`1q ´ trpA

1{2
t q can be bounded as

trp rA
1{2
t`1q ´ trpA

1{2
t q “ ´tr

”

´A
1{2
t PtpJ ` P

J
t A

1{2
t Ptq

´1PJt A
1{2
t

ı

ď ´tr

»

–´A
1{2
t Pt

˜

J `

«

2αuJt A
1{2
t ut 0

0 2αvJt A
1{2
t vt

ff¸´1

PJt A
1{2
t

fi

fl

“ ´
αxAt, utu

J
t y

1` 2αxA
1{2
t , utuJt y

`
αxAt, vtv

J
t y

1´ 2αxA
1{2
t , vtvJt y

. (2.31)

Plugging Eq. (2.31) into Eq. (2.29) we complete the proof of Lemma 9.

To establish Lemma 1 from Lemma 9, we also need the following lemma to bound the Breg-
man divergence term ∆ψpA0, Uq:
Lemma 10. Suppose A0 “ pc0I ` αZ0q

´2 as in Proposition 2, then for any U P ∆pˆp:

∆ψpA0, Uq ď 2
?
p` αxZ0, Uy .

Proof. By definition of ∆ψ, ψ and A0, we have

∆ψpA0, Uq “ xA
´1{2
0 , Uy ` trpA

1{2
0 q ´ 2trpU1{2

q ď xc0I ` αZ0, Uy `
?
p,

5pA` UCV q´1 “ A´1 ´A´1UpC´1 ` V A´1Uq´1V A´1, provided that all inverses exist.
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where the last inequality holds because trpU1{2q ě 0 and trpA
1{2
0 q ď

a

p ¨ trpA0q “
?
p. Note

also that xI, Uy “ trpUq “ 1. Therefore,

∆ψpA0, Uq ď αxZ0, Uy ` c0 `
?
p.

Because trpA0q “ 1, the constant c0 (if positive) must be upper bounded by
?
p because oth-

erwise trpA0q ď trppc0Iq
´2q “ p ¨ c´2

0 ă 1. Therefore, it is proved that ∆ψpA0, Uq ď
αxZ0, Uy ` 2

?
p.

Combining Lemmas 9 and 10, we complete the proof of Lemma 1.
In the rest of this section we state proofs of technical propositions that are omitted above.

Proof of Proposition 2 We first show that for any symmetric matrix Z P Rpˆp, there ex-
ists unique c P R such that αZ ` cI ą 0 and trrpαZ ` cIq´2s “ 1. By simple asymptotic
analysis, limcÑp´αλminpZqq` trrpαZ ` cIq´2s “ `8 and limcÑ`8 trrpαZ ` cIq´2s “ 0. Be-
cause trrpαZ ` cIq´2s is a continuous and strictly decreasing function in c on the open interval
p´αλminpZq,`8q, we conclude that there must exist a unique c such that trrpαZ ` cIq´2s “ 1.
The range of c also ensures that αZ ` cI ą 0.

We now use induction to prove this proposition. For t “ 0 the proposition is obviously
correct. We shall now assume that the proposition holds true for At´1 (i.e., At´1 “ pct´1I `
αZ0 `

řt´2
`“0 F`q

´2) for some t ě 1, and try to prove the same for At.
The KKT condition of the optimization problem and the gradients of the Bregman divergence

∆ψ yields
∇ψpAtq ´∇ψpAt´1q ` αFt´1 ´ dtI “ 0, (2.32)

where the dtI term arises from the Lagrangian multiplier and dt P R is the unique number that
makes´∇ψpAt´1q`αFt´dtI ĺ 0 (because∇ψpAtq ľ 0) and trpAtq “ trpp∇ψq´1p∇ψpAt´1q`

dtI ´ αFt´1qq “ 1. Re-organizing terms in Eq. (3.110) and invoking the induction hypothesis
we have

At “ p∇ψq´1
p∇ψpAt´1q ` dtI ´ αFt´1q

“ p∇ψq´1

˜

´ct´1I ´ αZ0 ´ α
t´1
ÿ

`“0

F` ` dtI

¸

.

Because dt is the unique number that ensures At ľ 0 and trpAtq “ 1, and Z0 `
řt´1
`“0 F` ľ 0, it

must hold that ´ct`1 ` dt “ ct. Subsequently,∇ψpAtq “ ´pA´1{2
t q “ ´ctI ´ αZ ´ α

řt´1
`“0 F`.

The claim is thus proved by raising both sides of the identity to the power of ´2.

Proof of Proposition 3 We first show pA
´1{2
t´1 ` αFt´1q

´2 is well defined. By assumption
αxA

1{2
t´1, vt´1v

J
t´1y ă 1, and hence ´αFt´1 ĺ αvt´1v

J
t´1 ă A

´1{2
t´1 . This is because for any

matrices A ą 0 and B ľ 0, we have xA,By “ trpAJBq ă 1 ùñ AJB ĺ I ùñ B ĺ A´1.
Consequently, we have A´1{2

t´1 ` αFt´1 ą 0 and its inverse exists.
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Next, to prove rAt “ pA
´1{2
t´1 `αFt´1q

´2 is a minimizer of the convex function t∆ψpAt´1, Aq`

αxFt´1, Ayu over all positive semi-definite matrices A, we show its gradient evaluated at rAt is
zero.6 Indeed,

∇
´

∆ψpAt´1, rAtq ` αxFt´1, rAty
¯

“ ∇ψp rAtq ´∇ψpAt´1q ` αFt´1

“ ´ rA
´1{2
t ` A

´1{2
t´1 ` αFt´1 “ 0 .

Proof of Proposition 4 Define R “
„

b ´d
´d c



. Because PJt A
1{2
t Pt “

„

b d
d c



is positive

semi-definite, we conclude that R is also positive semi-definite and hence can be written as
R “ QQJ. To prove Proposition 4, we only need to establish the positive semi-definiteness of
the following difference matrix:
ˆ

J `

„

b d
d c

˙´1

´

ˆ

J `

„

2b 0
0 2c

˙´1

“

ˆ

J `

„

2b 0
0 2c



´

„

b ´d
´d c

˙´1

´

ˆ

J `

„

2b 0
0 2c

˙´1

“

ˆ

J `

„

2b 0
0 2c

˙´1

Q

˜

I ´QJ
ˆ

J `

„

2b 0
0 2c

˙´1

Q

¸´1

QJ
ˆ

J `

„

2b 0
0 2c

˙´1

.

Here in the last equality we again use the Woodbury matrix identity. It is clear that to prove
the positive semi-definiteness right-hand side of the above equality, It suffices to show QJpJ `
diagp2b, 2cqq´1Q ă I . By standard matrix analysis and the fact that J “ diagp1,´1q,

QJ
ˆ

J `

„

2b 0
0 2c

˙´1

Q “ QJ
„

p1` 2bq´1 0
0 ´p1´ 2cq´1



Q

paq
ĺ QJ

„

p1` 2bq´1 0
0 0



Q ĺ
}QQJ}op

1` 2b
¨ I

pbq
ĺ

maxt2b, 2cu

1` 2b
¨ I

pcq
ă I.

Some steps in the above derivation require additional explanation. In (a), we use the fact that
2c “ 2αxA

1{2
t , vtv

J
t y ă 1, and hence p1 ´ 2cq´1 ą 0; in (b), we use the fact that QQJ “

„

b ´d
´d c



ĺ

„

2b 0
0 2c



; finally, (c) holds because b “ 2αxA
1{2
t , utu

J
t y ě 0, 2b

1`2b
ă 1 and

2c ă 1. The proof of Proposition 4 is thus completed.

2.7.4 Proof of Theorem 3
The following lemma is the key result in our proof of Theorem 3:

6The convexity of this objective follows from Lieb’s concavity theorem (Bhatia, 1997; Lieb, 1973), and is already
a known fact in matrix regret minimization literatures (Allen-Zhu et al., 2015).
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Lemma 11 (main averaging lemma). For every ε ą 0 and subset Λ Ď rns of cardinality k,
suppose λminp

ř

iPΛ xix
J
i q ď 1´ 15ε and A “ pcI ` α

ř

iPΛ xix
J
i q
´2, where c P R is the unique

number such that A ľ 0 and trpAq “ 1. Then, the following statements are true:

ν :“ min
iPΛ,2αxA1{2,xixJi yă1

xA, xix
J
i y

1´ 2αxA1{2, xixJi y
ď

1´ ε

k
; (2.33)

max
jPrnszΛ

xA, xjx
J
j y

1` 2αxA1{2, xjxJj y
ě ν `

ε

k
. (2.34)

Furthermore, if α “
?
p{ε and k ě 6p{ε2 for some ε P p0, 1{15q, then there always exists i P Λ

such that 2αxA1{2, xix
J
i y ă 1.

In other words, Lemma 11 suggests that, as long as λminp
ř

iPΛ xix
J
i q ď 1 ´ 15ε, we can

simply choose it to be the index i P Λt which minimizes xAt,xix
J
i y

1´2αxA
1{2
t ,xixJi y

, and jt to be the index

j R Λt which maximizes
xAt,xjx

J
j y

1`2αxA
1{2
t ,xjxJj y

. Eqs. (2.33) and (2.34) together imply that

˜

´
xAt, xjtx

J
jty

1` 2αxA
1{2
t , xjtx

J
jt
y
`

xAt, xitx
J
ity

1´ 2αxA
1{2
t , xitx

J
it
y

¸

ď ´
ε

k
. (2.35)

In sum, either there exists some index t “ 0, 1, . . . , T ´ 1 such that λminp
ř

iPΛt
xix

J
i q ą

1´ 15ε is satisfied, or we can always find pairs pit, jtq satisfying Eq. (2.35), which implies

´λmin

˜

ÿ

jPΛT

xjx
J
j

¸

ď

T´1
ÿ

t“0

´
ε

k
`

2
?
p

α
“ ´

Tε

k
` 2ε .

Here in the last inequality we apply the choice α “
?
p{ε. In other words, as long as T ě k{ε, it

must satisfy λminp
ř

iPΛT
xix

J
i q ě 1´2ε, and subsequently by the reciprocal multiplicity property

we complete the proof of Theorem 3.

Proof of Lemma 11 We first state a technical proposition as follows:
Proposition 5. Suppose Z ľ 0 is a p-dimensional PSD matrix with λminpZq ď 1. Let A “

pαZ ` cIq´2, where c P R is the unique real number such that A ľ 0 and trpAq “ 1. Then
1. αxA1{2, Zy ď p` α

?
p;

2. xA,Zy ď
?
n{α ` λminpZq.

Proof. For any orthogonal matrix U , the transform Z ÞÑ UZUJ leads to X ÞÑ UXUJ and
X1{2 ÞÑ UX1{2UJ; thus both inner products are invariant to orthogonal transform of Z. There-
fore, we may assume without loss of generality that Z “ diagpσ1, . . . , σpq for λ1 ě ¨ ¨ ¨λp ě 0,
because Z ľ 0. Subsequently,

αxA1{2, Zy “
p
ÿ

i“1

αλi
αλi ` c

“ p´ c ¨
p
ÿ

i“1

1

αλi ` c
.
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If c ě 0, then αxA1{2, Zy ď p and the first property is clearly true. For the case of c ă 0, note
that c must be strictly larger than ´αλp, as we established in Proposition 2. Subsequently, by the
Cauchy-Schwarz inequality,

αxA1{2, Zy “ p´ c ¨
p
ÿ

i“1

1

αλi ` c
ď p´ c ¨

?
p ¨

g

f

f

e

p
ÿ

i“1

1

pαλi ` cq2
.

Because λp “ λminpZq ď 1 and trpAq “ trrpαZ ` cIq´2s “ 1, we have that c ě ´α and
a

řp
i“1 pαλi ` cq

´2 “ 1. Therefore, αxA1{2, Zy ď p`α
?
p, which establishes the first property

in Proposition 5.
We next turn to the second property. Using similar analysis, we have

αxZ,Ay “
p
ÿ

i“1

αλi
pαλi ` cq2

“

p
ÿ

i“1

1

αλi ` c
´ c ¨

p
ÿ

i“1

1

pαλi ` cq2

ď
?
p ¨

g

f

f

e

p
ÿ

i“1

1

pαλi ` cq2
´ c ¨

p
ÿ

i“1

1

pαλi ` cq2
ď
?
p´ c.

Property 2 is then proved by noting that c ą ´λminpZq.

Back to the proof of Lemma 11, we first show the existence of (at least one) i P Λ such that
2αxA1{2, xix

J
i y ă 1. Define Z “

ř

iPΛ xix
J
i , and by definition A “ pcI ` α

ř

iPΛ xix
J
i q
´2 “

pαZ ` cIq´2. Assume by way of contradiction that such i does not exist. We then have
ÿ

iPΛ

2αxA1{2, xix
J
i y “ 2αxA1{2, Zy ě |Λ| “ k. (2.36)

On the other hand, because Z ľ 0 and λminpZq ă 1, invoking Proposition 5 we get

2αxA1{2, Zy ď 2p` 2α
?
p

which contradicts Eq. (2.36) provided that α “
?
p{ε and k ą 4p{ε. Thus, there must exist i P Λ

such that 2αxA1{2, xix
J
i y ă 1. In fact, a stronger result

ř

iPΛp1 ´ 2αxA1{2, xix
J
i yq ą 0 can be

established following the above arguments.
We next proceed to prove Eq. (2.33). By definition of ν, we must have that p1´2αxA1{2, xix

J
i yqν ď

xA, xix
J
i y for all i P Λ, because if 2αxA1{2, xix

J
i y ě 1 the left-hand side is non-positive while

the right-hand side is always non-negative, thanks to the positive semi-definiteness of A. Subse-
quently,

ν ď

ř

iPΛ xA, xix
J
i y

ř

iPΛp1´ 2αxA1{2, xixJi yq
ď

?
p{α ` λminp

ř

iPΛ xix
J
i q

k ´ 2p´ 2α
?
p

ď
ε` 1´ 15ε

kp1´ 13εq
ď

1´ ε

k
,

where the first inequality holds because the denominator is strictly positive, and in the second
inequality we invoke Proposition 5. We have thus proved that ν ď p1´ εq{k.
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Finally we prove Eq. (2.34). Define t “ ν ` ε{k ď 1{k. To prove Eq. (2.34) it suffices to
show that

ř

jPrnszΛ πjxA, xjx
J
j y ě t

ř

jPrnszΛ πjp1` 2αxA1{2, xjx
J
j yq, because πj ě 0 for all j.

Recall that
řn
j“1 πj “ k,

řn
j“1 πjxjx

J
j “ I . We then have

ÿ

jPrnszΛ

πjp1` 2αxA1{2, xjx
J
j yq “

˜

k ´
ÿ

jPΛ

πj

¸

` 2α ¨
ÿ

jPrnszΛ

πjxA
1{2, xjx

J
j y

ď

˜

k ´
ÿ

jPΛ

πj

¸

` 2α ¨
n
ÿ

j“1

πjxA
1{2, xjx

J
j y

“ k ´
ÿ

jPΛ

πj ` 2αxI, A1{2
y “ k ´

ÿ

jPΛ

πj ` 2αtrpA1{2
q.

Similarly,

ÿ

jPrnszΛ

πjxA, xjx
J
j y “

C

I ´
ÿ

jPΛ

πjxix
J
i , X

G

“ trpAq ´
ÿ

jPΛ

πjxA, xjx
J
j y.

Note that for any p ˆ p positive semi-definite matrix Z ľ 0, trpZ1{2q ď
a

p ¨ trpZq thanks to
the Hölder’s inequality 7 applied to the non-negative spectrum of Z1{2, and that trpAq “ 1 by
definition. Subsequently,

ÿ

jPrnszΛ

πjxA, xjx
J
j y ´ t ¨

ÿ

jPrnszΛ

πjp1` 2αxA1{2, xjx
J
j yq

ě trpAq ´
ÿ

jPΛ

πjxA, xjx
J
j y ´ t

˜

k ´
ÿ

jPΛ

πj

¸

´ 2αt ¨ trpA1{2
q

ě 1´
ÿ

jPΛ

πjxA, xjx
J
j y ´ t

˜

k ´
ÿ

jPΛ

πj

¸

´ 2αt
?
p

“ 1´ tk ´ 2tα
?
p´

ÿ

jPΛ

πjpxA, xjx
J
j y ´ tq

ě 1´ tk ´ 2tα
?
p´

ÿ

jPΛ

maxtxA, xjx
J
j y ´ t, 0u (2.37)

ě 1´ tk ´ 2tα
?
p´

ÿ

jPΛ

pxA, xjx
J
j y ´ tq ´

ÿ

jPΛ

maxtpt´ xA, xjx
J
j yq, 0u

ě 1´ 2tα
?
p´

?
p{α ´ λmin

˜

ÿ

jPΛ

xjx
J
j

¸

´
ÿ

jPΛ

maxtpt´ xA, xjx
J
j yq, 0u. (2.38)

Here Eq. (2.37) holds because πj ď 1 for all j, and in Eq. (2.38) we apply the
ř

jPΛxA, xjx
J
j y ď

?
p{α ` λminp

ř

jPΛ xjx
J
j q property as established in Proposition 5. By the conditions that α “

7|x1| ` ¨ ¨ ¨ ` |xd| ď
?
d ¨

a

x21 ` ¨ ¨ ¨ ` x
2
d for any sequences of d real numbers x1, . . . , xn.
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?
p{ε, t ď 1{k and λminp

ř

jPΛ xjx
J
j q ď 1 ´ 3ε, the right-hand side of Eq. (2.38) can be lower

bounded by the simplified form of

ÿ

jPrnszΛ

πj
 

xA, xjx
J
j y ´ tp1` 2αxA1{2, xjx

J
j yq

(

ě 2ε´
2p

εk
´
ÿ

jPΛ

maxtt´ xA, xjx
J
j y, 0u. (2.39)

Furthermore, because p1 ´ 2αxA1{2, xix
J
i yqν ď xA, xix

J
i y for all i P Λ, invoking Proposition 5

we have
ÿ

iPΛ1

pν ´ xA, xix
J
i yq ď

ÿ

iPΛ1

2ναxA1{2, xjx
J
j y ď 2νpp` α

?
pq for all Λ1 Ď Λ.

Consider Λ “ ti P Λ : t´ xA, xix
J
i y ě 0u. We then have

ÿ

jPΛ

maxtt´ xA, xjx
J
j y, 0u “

ÿ

jPΛ

pt´ xA, xjx
J
j yq “ pt´ νq|Λ| `

ÿ

jPΛ

pν ´ xA, xjx
J
j yq

ď ε`
4p{ε

k
, (2.40)

where the last inequality holds because t ´ ν “ ε{k ě 0, |Λ| ď k, ν ď 1{k and α “
?
p{ε.

Combining Eqs. (2.39) and (2.40) we arrive at

ÿ

jPrnszΛ

πj
 

xA, xjx
J
j y ´ tp1` 2αxA1{2, xjx

J
j yq

(

ě ε´
6p

εk
.

If k ě 6p{ε2, the right-hand side of the above inequality is non-negative, which is to be demon-
strated.

2.7.5 Proof of Lemma 2
Without loss of generality assume ki ą 0 for all i, because for those design points with ki “ 0
no information is gained and therefore these points can be excluded from the analysis. Let
wi “ 4ki`1 be the weight of design point xi and define W :“ diagpw1, ¨ ¨ ¨ , wnq. The weighted
OLS estimator pβk then admits a closed-form expression

pβk “ pX
JWXq´1XJW ry, (2.41)

where ry “ pry1, ¨ ¨ ¨ , rynq P Rn. Define ε :“ ry´ y. Using the linear model that y “ Xβ0, we have
pβk ´ β0 “ pX

JWXq´1XJWε. On the other hand, by the quantized error model Eq. (2.13), it
holds that Erεi|Xs “ 0 and Erε2

i |Xs ď 4´pki`1qM2 “ w´1
i M2. Subsequently,

E}pβk ´ β0}
2
2

“ tr
“

pXJWXq´1XJWEpεεJqWJXpXJWXq´1
‰

ďM2
¨ tr

“

pXJWXq´1XJWXpXJWXq´1
‰

“M2
¨ tr

“

pXJWXq´1
‰

.
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Chapter 3

Selective queries in nonparametric optimization

Let f : X Ñ R be an unknown function defined on a known d-dimensional domain X Ď Rd

with non-empty interior. The objective of optimization is to find the minimizer of f over X , or
more specifically

min
xPX

fpxq, (3.1)

assuming that such a minimizer exists.
Unlike the traditional optimization literature, where the objective function f to be minimized

is known and first-order or second-order of derivatives of f are readily accessible, in this chapter
we consider the case where the function f itself is unknown and therefore no derivatives of f
can be accurately evaluated. Instead, an algorithm gains information about f through n rounds
of interactive queries from a noisy oracle, and produces an estimate pxn P X that approximately
minimizes the unknown function f .

More specifically, at time t P t1, 2, ¨ ¨ ¨ , nu, an algorithm picks a query point xt P X and
observes feedback

yt “ fpxtq ` ξt, (3.2)

where ξt „ N p0, σ2q is a centered Gaussian random variable reflecting the noise in the evaluation
of fpxtq inherent from the underlying measurement procedures. The optimization error can then
be evaluated as Efppxnq ´ f˚ where f˚ “ minxPX fpxq, reflecting the gap in function values
between the estimated minimizer pxn and the true minimizer x˚ P argminxPXfpxq.

Some constraints such as smoothness or convexity are imposed on the unknown function f
(denoted as f P F) to make the approximate optimization problem information-theoretically
feasible. Nevertheless, no strong assumptions such as explicit parametric forms are assumed for
f , making the problem essentially nonparametric.

The (noisy) nonparametric optimization problem has important applications in machine learn-
ing and operations research, under the names of zeroth-order (derivative-free) optimization,
black-box optimization, Bayesian optimization, and/or simulation optimization. They can be
applied to problems such as hyper-parameter tuning in machine learning systems or search for
optimal parameters in experimental or simulation studies (Leeds et al., 2014; Nakamura et al.,
2017; Reeja-Jayan et al., 2012; Snoek et al., 2012).

We consider in this chapter three different settings of selective queries in nonparametric op-
timization. Sec. 3.1 considers very low domain dimension d, but allows the function f to be
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very flexible. On the other hand, Sec. 3.2 considers the setting of very high domain dimen-
sion d (even exceeding the total number of queries n), but places strong assumptions such as
convexity and sparsity on f . Finally, Sec. 3.3 studies the non-stationary or dynamic settings
of nonparametric optimization, in which the function f to be optimized may change over time.
Such non-stationary optimization questions have important applications in dynamic pricing and
other revenue management problems (Besbes et al., 2015).

3.1 Nonparametric optimization: local minimax rates
We consider the question of optimizing a nonparametric f : X Ñ R over the unit cube X “

r0, 1sd. The optimization error of pxn P X is evaluated by

Lppxn; fq :“ fppxnq ´ f
˚ where f˚ :“ inf

xPX
fpxq. (3.3)

For simplicity, the variance of the noise variables tξtunt“1 in Eq. (3.2) is set as σ2 “ 1.

3.1.1 Local minimax rates
We use the classical local minimax analysis (Van der Vaart, 1998) to understand the fundamental
information-theoretical limits of noisy global optimization of smooth functions. On the upper
bound side, we seek (active) estimators pxn such that

sup
f0PΘ

sup
fPΘ1,}f´f0}8ďεnpf0q

Pr
f
rLppxn; fq ě C1 ¨Rnpf0qs ď 1{4, (3.4)

where C1 ą 0 is a positive constant. Here f0 P Θ is referred to as the reference function, and f P
Θ1 is the true underlying function which is assumed to be “near” f0. The minimax convergence
rate of Lppxn; fq is then characterized locally by Rnpf0q which depends on the reference function
f0. The constant of 1{4 is chosen arbitrarily and any small constant leads to similar conclusions.
To establish negative results (i.e., locally minimax lower bounds), in contrast to the upper bound
formulation, we assume the potential active optimization estimator pxn has perfect knowledge
about the reference function f0 P Θ. We then prove locally minimax lower bounds of the form

inf
pxn

sup
fPΘ1,}f´f0}8ďεnpf0q

Pr
f
rLppxn; fq ě C2 ¨Rnpf0qs ě 1{3, (3.5)

where C2 ą 0 is another positive constant and εnpf0q, Rnpf0q are desired local convergence rates
for functions near the reference f0.

Although in some sense classical, the local minimax definition we propose warrants fur-
ther discussion. We give some additional remarks on the parameters and the interpretation of
Eq. (3.4).
1. Roles of Θ and Θ1: The reference function f0 and the true functions f are assumed to

belong to different but closely related function classes Θ and Θ1. In particular, in our paper
Θ Ď Θ1, meaning that less restrictive assumptions are imposed on the true underlying function
f compared to those imposed on the reference function f0 on which Rn and εn are based.
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2. Upper Bounds: It is worth emphasizing that the estimator pxn has no knowledge of the
reference function f0. From the perspective of upper bounds, we an consider the simpler task
of producing f0-dependent bounds (eliminating the second supremum) to instead study the
(already interesting) quantity:

sup
f0PΘ

Pr
f0
rLppxn; f0q ě C1Rnpf0qs ď 1{4.

As indicated above we maintain the double-supremum in the definition because fewer as-
sumptions are imposed directly on the true underlying function f , and further because it
allows to more directly compare our upper and lower bounds.

3. Lower Bounds and the choice of the “localization radius” εnpf0q: Our lower bounds allow
the estimator knowledge of the reference function (this makes establishing the lower bound
more challenging). Eq. (3.5) implies that no estimator pxn can effectively optimize a function f
close to f0 beyond the convergence rate of Rnpf0q, even if perfect knowledge of the reference
function f0 is available a priori. The εnpf0q parameter that decides the “range” in which
local minimax rates apply is taken to be on the same order as the actual local rate Rnpf0q

in this paper. This is (up to constants) the smallest radius for which we can hope to obtain
non-trivial lower-bounds: if we consider a much smaller radius than Rnpf0q then the trivial
estimator which outputs the minimizer of the reference function would achieve a faster rate
than Rnpf0q. Selecting the smallest possible radius makes establishing the lower bound most
challenging but provides a refined picture of the complexity of zeroth-order optimization.

3.1.2 Assumptions
We state and motivate assumptions that will be used. The first assumption states that f is locally
Hölder smooth on its level sets.

(A1) There exist constants κ, α,M ą 0 such that f restricted on Xf,κ :“ tx P X : fpxq ď
f˚ ` κu belongs to the Hölder class ΣαpMq, meaning that f is k-times differentiable on
Xf,κ and furthermore for any x, x1 P Xf,κ, 1

k
ÿ

j“0

ÿ

α1`...`αd“j

|f pα,jqpxq| `
ÿ

α1`...`αd“k

|f pα,kqpxq ´ f pα,kqpx1q|

}x´ x1}α´k8

ďM. (3.6)

Here k “ tαu is the largest integer lower bounding α and f pα,jqpxq :“ Bjfpxq{Bxα1
1 . . . Bxαdd .

We use Σα
κpMq to denote the class of all functions satisfying (A1). We remark that (A1) is

weaker than the standard assumption that f on its entire domain X belongs to the Hölder class
ΣαpMq. This is because places with function values larger than f˚ ` κ can be easily detected
and removed by a pre-processing step, as we describe in the next section.

Our next assumption concern the “regularity” of the level sets of the “reference” function f0.
Define Lf0pεq :“ tx P X : f0pxq ď f˚0 `εu as the ε-level set of f0, and µf0pεq :“ λpLf0pεqq as the
Lebesgue measure of Lf0pεq, also known as the distribution function. Define also NpLf0pεq, δq
as the smallest number of `2-balls of radius δ that cover Lf0pεq.

1the particular `8 norm is used for convenience only and can be replaced by any equivalent vector norms.
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Figure 3.1: Informal illustrations of Algorithm 7. Solid blue curves depict the underlying func-
tion f to be optimized, black and red solid dots denote the query points and their responses
tpxt, ytqu, and black/red vertical line segments correspond to uniform confidence intervals on
function evaluations constructed using current batch of data observed. The left figure illustrates
the first epoch of our algorithm, where query points are uniformly sampled from the entire do-
main X . Afterwards, sub-optimal locations based on constructed confidence intervals are re-
moved, and a shrinkt “candidate set” S1 is obtained. The algorithm then proceeds to the second
epoch, illustrated in the right figure, where query points (in red) are sampled only from the re-
stricted candidate set and shorter confidence intervals (also in red) are constructed and updated.
The procedure is repeated until Oplog nq epochs are completed.

(A2) There exist constants c0 ą 0 and C0 ą 0 such that NpLf0pεq, δq ď C0r1` µf0pεqδ
´ds for

all ε, δ P p0, c0s.

We use ΘC to denote all functions that satisfy (A2) with respect to parameters C “ pc0, C0q.

At a higher level, the regularity condition (A2) assumes that the level sets are sufficiently
“regular” such that covering them with small-radius balls does not require significantly larger
total volumes. For example, consider a perfectly regular case of Lf0pεq being the d-dimensional
`2 ball of radius r: Lf0pεq “ tx P X : }x ´ x˚}2 ď ru. Clearly, µf0pεq — rd. In addition, the
δ-covering number in `2 of Lf0pεq is on the order of 1` pr{δqd — 1` µf0pεqδ

´d, which satisfies
the scaling in (A2).

When (A2) holds, uniform confidence intervals of f on its level sets are easy to construct
because little statistical efficiency is lost by slightly enlarging the level sets so that complete d-
dimensional cubes are contained in the enlarged level sets. On the other hand, when regularity of
level sets fails to hold such nonparametric estimation can be very difficult or even impossible. As
an extreme example, suppose the level set Lf0pεq consists of n standalone and well-spaced points
in X : the Lebesgue measure of Lf0pεq would be zero, but at least Ωpnq queries are necessary
to construct uniform confidence intervals on Lf0pεq. It is clear that such Lf0pεq violates (A2),
because NpLf0pεq, δq ě n as δ Ñ 0` but µf0pεq “ 0.
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Algorithm 7 Successive elimination for low-dimensional nonparametric optimization
1: Parameters: α, M , δ, n
2: Output: pxn “ xn, the final prediction
3: Initialization: S0 “ Gn, %0pxq ” 8, T “ tlog2 nu, n0 “ tn{T u;
4: for τ “ 1, 2, . . . , T do
5: Compute “extended” sample set S˝τ´1p%τ´1q defined in Eq. (3.7);
6: for t “ pτ ´ 1qn0 ` 1 to τn0 do
7: Sample xt uniformly at random from S˝τ´1p%τ´1q and observe yt “ fpxtq ` wt;
8: end for
9: For every x P Sτ´1, find bandwidth htpxq and build CI r`tpxq, utpxqs in Eq. (3.12);

10: Sτ :“ tx P Sτ´1 : `tpxq ď minx1PSτ´1 utpx
1qu, %τ pxq :“ mint%τ´1pxq, htpxqu.

11: end for

3.1.3 The successive elimination algorithm
Our algorithm is based on the idea of successive elimination, which eliminates candidate points
that are proven sub-optimal. We start with a cleaner algorithm that operates under the slightly
stronger condition that κ “ 8 in (A1), meaning that f is α-Hölder smooth on the entire domain
X . The generalization to κ ą 0 being a constant is given in an additional pre-processing step.

LetGn P X be a finite grid of points inX . We assume the finite gridGn satisfies the following
two mild conditions:
(B1) Points in Gn are sampled i.i.d. from an unknown distribution PX on X ; furthermore, the

density pX associated with PX satisfies p
0
ď pXpxq ď p0 for all x P X , where 0 ă p

0
ď

p0 ă 8 are uniform constants;

(B2) |Gn| Á n3d{minpα,1q and log |Gn| “ Oplog nq.
Remark 3. Although typically the choices of the grid points Gn belong to the data analyst, in
some applications the choices of design points are not completely free. For example, in mate-
rial synthesis experiments some environment parameter settings (e.g., temperature and pressure)
might not be accessible due to budget or physical constraints. Thus, we choose to consider less
restrictive conditions imposed on the design gridGn, allowing it to be more flexible in real-world
applications.

For any subset S Ď Gn and a “weight” function % : Gn Ñ R`, define the extension S˝p%q of
S with respect to % as

S˝p%q :“
ď

xPS

B8%pxqpx;Gnq where B8%pxqpx;Gnq “ tz P Gn : }z ´ x}8 ď %pxqu. (3.7)

The algorithm can then be formulated as two level of iterations, with the outer loop shrinking
the “active set” Sτ and the inner loop collecting data that reduce lengths of confidence intervals
on the active set. An intuitive illustration of our proposed algorithm is given in Fig. 3.1, and a
pseudo-code description is given in Algorithm 7.

Local Polynomial Regression We use local polynomial regression (Fan & Gijbels, 1996) to
obtain the estimate pfpxq. In particular, for any x P Gn and a bandwidth parameter h ą 0,
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consider a least square polynomial estimate

pfh P arg min
gPPk

t
ÿ

t1“1

Irxt1 P B8h pxqs ¨ pyt1 ´ gpxt1qq
2 , (3.8)

where B8h pxq :“ tx1 P X : }x1 ´ x}8 ď hu and Pk denotes all polynomials of degree k on X .
To analyze the performance of pfh evaluated at a certain point x P X , define mapping ψx,h :

z ÞÑ p1, ψ1
x,hpzq, . . . , ψ

k
x,hpzqq where ψjx,h : z ÞÑ r

śj
`“1 h

´1pzi` ´ xi`qs
d
i1,...,ij“1 is the degree-j

polynomial mapping from Rd to Rdj . Also define Ψt,h :“ pψx,hpxt1qq1ďt1ďt,xt1PBhpxq as the mˆD
aggregated design matrix, where m “

řt
t1“1 Irxt1 P B8h pxqs and D “ 1` d` . . .` dk, k “ tαu.

The estimate pfh defined in Eq. (3.8) then admits the following closed-form expression:

pfhpzq ” ψx,hpzq
J
pΨJ

t,hΨt,hq
:ΨJ

t,hYt,h, (3.9)

where Yt,h “ pyt1q1ďt1ďt,xt1PB8h pxq and A: is the Moore-Penrose pseudo-inverse of A.
The following lemma gives a finite-sample analysis of the error of pfhpxq:

Lemma 12. Suppose f satisfies Eq. (3.6) on B8h px;X q, maxzPB8h px;X q }ψx,hpzq}2 ď b and
1
m

ΨJ
t,hΨt,h ľ σIDˆD for some σ ą 0. Then for any δ P p0, 1{2q, with probability 1´ δ

ˇ

ˇ pfhpxq ´ fpxq
ˇ

ˇ ď
b2

σ
Mdkhα

loooomoooon

bh,δpxq

` b

c

5D lnp1{δq

σm
looooooomooooooon

sh,δpxq

“: ηh,δpxq. (3.10)

Remark 4. bh,δpxq, sh,δpxq and ηh,δpxq depend on x becauses σ depends on Ψt,h, which further
depends on the sample points in the neighborhood B8h px;X q of x.

In the rest of the paper we define bh,δpxq :“ pb2{σqMdkhα and sh,δpxq :“ b
a

5D lnp1{δq{σm

as the bias and standard deviation terms in the error of pfhpxq, respectively. We also denote
ηh,δpxq :“ bh,δpxq ` sh,δpxq as the overall error in pfhpxq.

Notice that when bandwidth h increases, the bias term bh,δpxq is likely to increase too be-
cause of the hα term; on the other hand, with h increasing the local neighborhood B8h px;X q
enlarges and would potentially contain more samples, implying a larger m and smaller standard
deviation term sh,δpxq. A careful selection of bandwidth h balances bh,δpxq and sh,δpxq and yields
appropriate confidence intervals on fpxq, a topic that is addressed in the next section.

Bandwidth Selection and Confidence Intervals Given the expressions of bias bh,δpxq and
standard deviation sh,δpxq in Eq. (3.10), the bandwidth htpxq ą 0 at epoch t and point x is
selected as

htpxq :“
jtpxq

n2
where jtpxq :“ arg max

 

j P N, j ď n2 : bj{n2,δpxq ď sj{n2,δpxq
(

. (3.11)

More specifically, htpxq is the largest positive value in an evenly spaced grid tj{n2u such that
the bias of pfhpxq is smaller than its standard deviation. Such bandwidth selection is in principle
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similar to the Lepski’s method (Lepski et al., 1997), with the exception that an upper bound on
the bias for any bandwidth parameter is known and does not need to be estimated from data.

With the selection of bandwidth htpxq at epoch t and query point x, a confidence interval on
fpxq is constructed as

`tpxq :“ max
1ďt1ďt

!

pfht1 pxqpxq ´ ηht1 pxq,δpxq
)

and utpxq :“ min
1ďt1ďt

!

pfht1 pxqpxq ` ηht1 pxq,δpxq
)

.

(3.12)
Note that for any x P X , the lower confidence edge `tpxq is a non-decreasing function in t and
the upper confidence edge utpxq is a non-increasing function in t.

Pre-screening We describe a pre-screening procedure that relaxes the smoothness condition
from κ “ 8 to κ “ Ωp1q, meaning that only local smoothness of f around its minimum values
is required. Let n0 “ tn{ log nu, x1, . . . , xn0 be points i.i.d. uniformly sampled from X and
y1, . . . , yn0 be their corresponding responses. For every grid point x P Gn, perform the following:

1. Compute qfpxq as the average of all yi such that }xi ´ x}8 ď n
´1{2d
0 log3 n “: h0;

2. Remove all x P Gn from S0 if qfpxq ě minzPGn qfpzq ` 1{ log n.

Remark 5. The 1{ log n term in removal condition qfpxq ě minzPGn qfpzq ` 1{ log n is not impor-
tant, and can be replaced with any sequence tωnu such that limnÑ8 ωn “ 0 and limnÑ8 ωnn

t “

8 for any t ą 0. The readers are referred to the proof of Proposition 6 in the appendix for the
motivation of this term as well as the selection of the pre-screening bandwidth h0.

At a high level, the pre-screening step computes local averages of y and remove grid points
in S0 “ Gn whose estimated values are larger than the minimum in Gn.

To analyze the pre-screening step, we state the following proposition:
Proposition 6. Assume f P Σα

κpMq and let S 10 be the screened grid after step 2 of the pre-
screening procedure. Then for sufficiently large n, with probability 1´Opn´1q we have

min
xPS10

fpxq “ min
zPGn

fpxq and S 10 Ď
ď

xPLf pκ{2q

B8h0px;X q, (3.13)

where Lf pκ{2q “ tx P X : fpxq ď f˚ ` κ{2u.
To interpret Proposition 6, note that for sufficiently large n, f P Σα

κpMq implies f being α-
Hölder smooth (i.e., f satisfies Eq. (3.6)) on

Ť

xPLf pκ{2q
B8h0px;X q, because κ ą 0 is a constant

and h0 Ñ 0 as n Ñ 8. Subsequently, the proposition shows that with high probability, the pre-
screening step will remove all grid points in Gn in non-smooth regions of f , while maintaining
the global optimal solution. This justifies the pre-processing step for f P Σα

κpMq, because f is
smooth on the grid after pre-processing.

The proof of Proposition 6 uses the fact that the local mean estimation is large provided that
all data points in the local mean estimator are large, regardless of their underlying smoothness.
The complete proof of Proposition 6 is deferred to the appendix. Its proof is simple and is
deferred to the appendix.
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3.1.4 Locally minimax upper bounds

The following theorem is our main result that upper bounds the local minimax rate of noisy
global optimization with active queries.
Theorem 4. For any α,M, κ, c0, C0 ą 0 and f0 P Σα

κpMq XΘC , where C “ pc0, C0q, define

εUnpf0q :“ sup
 

ε ą 0 : ε´p2`d{αqµf0pεq ě n{ logω n
(

, (3.14)

where ω ą 5 ` d{α is a large constant. Suppose also that εUnpf0q Ñ 0 as n Ñ 8. Then for
sufficiently large n, there exists an estimator pxn with access to n active queries x1, . . . , xn P X ,
a constant CR ą 0 depending only on α,M, κ, c, c0, C0 and a constant γ ą 0 depending only on
α and d such that

sup
f0PΣακpMqXΘC

sup
fPΣακpMq,

}f´f0}8ďεUnpf0q

Pr
f

“

Lppxn, fq ą CR logγ n ¨ pεUnpf0q ` n
´1{2

q
‰

ď 1{4. (3.15)

Remark 6. Unlike the (local) smoothness class Σα
κpMq, the additional function class ΘC that

encapsulates (A2) is imposed only on the “reference” function f0 but not the true function f to
be estimated. This makes the assumptions considerably weaker because the true function f may
violate either or both (A2) while our results remain valid.
Remark 7. The estimator pxn does not require knowledge of parameters κ, c0, C0 or εUnpf0q, and
automatically adapts to them, as shown in the next section. While the knowledge of smoothness
parameters α and M seems to be necessary, we remark that it is possible to adapt to α and
M by running Oplog2 nq parallel sessions of pxn on Oplog nq grids of α and M values, and then
using Ωpn{ log2 nq single-point queries to decide on the location with the smallest function value.
Such an adaptive strategy was suggested in Grill et al. (2015) to remove an additional condition
in Minsker (2013), which also applies to our settings.
Remark 8. When the distribution function µf0pεq does not change abruptly with ε the expression
of εUnpf0q can be significantly simplified. In particular, if for all ε P p0, c0s it holds that

µf0pε{ log nq ě µf0pεq{rlog nsOp1q, (3.16)

then εUnpf0q can be upper bounded as

εUnpf0q ď rlog nsOp1q ¨ sup
 

ε ą 0 : ε´p2`d{αqµf0pεq ě n
(

. (3.17)

It is also noted that if µf0pεq has a polynomial behavior of µf0pεq — εβ for some constant β ě 0,
then Eq. (3.16) is satisfied and so is Eq. (3.17).

The quantity εUnpf0q “ inftε ą 0 : ε´p2`d{αqµf0pεq ě n{ logω nu is crucial in determin-
ing the convergence rate of optimization error of pxn locally around the reference function f0.
While the definition of εUnpf0q is mostly implicit and involves solving an inequality concerning
the distribution function µf0p¨q, we remark that it admits a simple form when µf0 has a poly-
nomial growth rate similar to a local Tsybakov noise condition (Korostelev & Tsybakov, 2012;
Tsybakov, 2009), as shown by the following proposition:
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Proposition 7. Suppose µf0pεq À εβ for some constant β P r0, 2 ` d{αq. Then εUnpf0q “

rOpn´α{p2α`d´αβqq. In addition, if β P r0, d{αs then εUnpf0q`n
´1{2 À εUnpf0q “ rOpn´α{p2α`d´αβqq.

We remark that the condition β P r0, d{αs was also adopted in the previous work (Minsker,
2013, Remark 6). Proposition 7 can be easily verified by solving the system ε´p2`d{αqµf0pεq ě
n{ logω n with the condition µf0pεq À εβ . We therefore omit its proof. The following two
examples give some simple reference functions f0 that satisfy the µf0pεq À εβ condition in
Proposition 7 with particular values of β.

Example 1. The constant function f0 ” 0 satisfies (A1) through (A3) with β “ 0.

Example 2. f0 P Σ2
κpMq that is strongly convex 2 satisfies (A1) through (A3) with β “ d{2.

Example 1 is simple to verify, as the volume of level sets of the constant function f0 ” 0
exhibits a phase transition at ε “ 0 and ε ą 0, rendering β “ 0 the only parameter option
for which µf0pεq À εβ . Example 2 is more involved, and holds because the strong convexity
of f0 lower bounds the growth rate of f0 when moving away from its minimum. We give a
rigorous proof of Example 2 in the appendix. We also remark that f0 does not need to be exactly
strongly convex for β “ d{2 to hold, and the example is valid for, e.g., piecewise strongly convex
functions with a constant number of pieces too.

To best interpret the results in Theorem 4 and Proposition 7, it is instructive to compare the
“local” rate n´α{p2α`d´αβq with the baseline rate n´α{p2α`dq, which can be attained by recon-
structing f in sup-norm and producing pxn P arg minxPX pfpxq. Since β ě 0, the local con-
vergence rate established in Theorem 4 is never slower, and the improvement compared to the
baseline rate n´α{p2α`dq is dictated by β, which governs the growth rate of volume of level sets
of the reference function f0. In particular, for functions that grows fast when moving away from
its minimum, the parameter β is large and therefore the local convergence rate around f0 could
be much faster than n´α{p2α`dq. Theorem 4 also implies concrete convergence rates for special
functions considered in Examples 1 and 2. For the constant reference function f0 ” 0, Example
1 and Theorem 4 yield that Rnpf0q — n´α{p2α`dq, which matches the baseline rate n´α{p2α`dq

and suggests that f0 ” 0 is the worst-case reference function. This is intuitive, because f0 ” 0
has the most drastic level set change at ε Ñ 0` and therefore small perturbations anywhere of
f0 result in changes of the optimal locations. On the other hand, if f0 is strongly smooth and
convex as in Example 2, Theorem 4 suggests that Rnpf0q — n´1{2, which is significantly better
than the n´2{p4`dq baseline rate 3 and also matches existing works on zeroth-order optimization
of convex functions (Agarwal et al., 2010). The faster rate holds intuitively because strongly con-
vex functions grows fast when moving away from the minimum, which implies small level set
changes. An active query algorithm could then focus most of its queries onto the small level sets
of the underlying function, resulting in more accurate local function reconstructions and faster
optimization error rate.

2A twice differentiable function f0 is strongly convex if there exists σ ą 0 such that∇2f0pxq ľ σI,@x P X .
3Note that f0 being strongly smooth implies α “ 2 in the local smoothness assumption.
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3.1.5 Locally minimax lower bounds

We prove local minimax lower bounds that match the upper bounds in Theorem 4 up to logarith-
mic terms. As we remarked in Section 3.1.1, in the local minimax lower bound formulation we
assume the data analyst has full knowledge of the reference function f0, which makes the lower
bounds stronger as more information is available a priori.

To facilitate such a strong local minimax lower bounds, the following additional condition is
imposed on the reference function f0 of which the data analyst has perfect information.

(A2’) There exist constants c10, C
1
0 ą 0 such that MpLf0pεq, δq ě C 10µf0pεqδ

´d for all ε, δ P
p0, c10s, where MpLf0pεq, δq is the maximum number of disjoint `2 balls of radius δ that
can be packed into Lf0pεq.

We denote Θ1
C1 as the class of functions that satisfy (A2’) with respect to parameters C 1 “

pc10, C
1
0q ą 0. Intuitively, (A2’) can be regarded as the “reverse” version of (A2), which basically

means that (A2) is “tight”.
We are now ready to state our main negative result, which shows, from an information-

theoretical perspective, that the upper bound in Theorem 4 is not improvable.
Theorem 5. Suppose α, c0, C0, c

1
0, C

1
0 ą 0 and κ “ 8. Denote C “ pc0, C0q and C 1 “ pc10, C

1
0q.

For any f0 P ΘC XΘ1
C1 , define

εLnpf0q :“ sup
 

ε ą 0 : ε´p2`d{αqµf0pεq ě n
(

. (3.18)

Then there exist constant M ą 0 depending on α, d, C, C 1 such that, for any f0 P Σα
κpM{2q X

ΘC XΘC1 ,

inf
pxn

sup
fPΣακpMq,

}f´f0}8ď2εLnpf0q

Pr
f

“

Lppxn; fq ě εLnpf0q
‰

ě
1

3
. (3.19)

Remark 9. For any f0 and n it always holds that εLnpf0q ď εUnpf0q.
Remark 10. If the distribution function µf0pεq satisfies Eq. (3.16) in Remark 8, then εLnpf0q ě

εUnpf0q{rlog nsOp1q.
Remark 9 shows that there might be a gap between the locally minimax upper and lower

bounds in Theorems 4 and 5. Nevertheless, Remark 10 shows that under the mild condition
of µf0pεq does not change too abruptly with ε, the gap between εUnpf0q and εLnpf0q is only a
poly-logarithmic term in n. Additionally, the following proposition derives explicit expression
of εLnpf0q for reference functions whose distribution functions have a polynomial growth, which
matches the Proposition 7 up to log n factors. Its proof is again straightforward.
Proposition 8. Suppose µf0pεq Á εβ for some β P r0, 2`d{αq. Then εLnpf0q “ Ωpn´α{p2α`d´αβqq.

The following proposition additionally shows the existence of f0 P Σα
8pMq XΘC XΘC1 that

satisfies µf0pεq — εβ for any values of α ą 0 and β P r0, d{αs. Its proof is given in the appendix.
Proposition 9. Fix arbitrary α,M ą 0 and β P r0, d{αs. There exists f0 P Σα

κpMq XΘC XΘC1

for κ “ 8 and constants C “ pc0, C0q, C 1 “ pc10, C
1
0q that depend only on α, β,M and d such

that µf0pεq — εβ .
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Theorem 5 and Proposition 8 show that the n´α{p2α`d´αβq upper bound on local minimax
convergence rate established in Theorem 4 is not improvable up to logarithmic factors of n.
Such information-theoretical lower bounds on the convergence rates hold even if the data analyst
has perfect information of f0, the reference function on which the n´α{p2α`d´αβq local rate is
based. Our results also imply an n´α{p2α`dq minimax lower bound over all α-Hölder smooth
functions, showing that without additional assumptions, noisy optimization of smooth functions
is as difficult as reconstructing the unknown function in sup-norm.

Our proof of Theorem 5 also differs from existing minimax lower bound proofs for active
nonparametric models (Castro & Nowak, 2008). The classical approach is to invoke Fano’s
inequality and to upper bound the KL divergence between different underlying functions f and g
using }f ´ g}8, corresponding to the point x P X that leads to the largest KL divergence. Such
an approach, however, does not produce tight lower bounds for our problem. To overcome such
difficulties, we borrow the lower bound analysis for bandit pure exploration problems in (Bubeck
et al., 2009). In particular, our analysis considers the query distribution of any active query
algorithm A “ pϕ1, . . . , ϕn, φnq under the reference function f0 and bounds the perturbation in
query distributions between f0 and f using Le Cam’s lemma. Afterwards, an adversarial function
choice f can be made based on the query distributions of the considered algorithm A.

Theorem 5 applies to any global optimization method that makes active queries. The fol-
lowing theorem, on the other hand, shows that for passive algorithms (i.e., x1, ¨ ¨ ¨ , xn drawn
independently at uniform from X ) the n´α{p2α`dq optimization rate is not improvable even with
additional level set assumptions imposed on f0. This demonstrates an explicit gap between pas-
sive and adaptive query models in global optimization problems.
Theorem 6. Suppose α, c0, C0, c

1
0, C

1
0 ą 0 and κ “ 8. Denote C “ pc0, C0q and C 1 “ pc10, C

1
0q.

Then there exist constant M ą 0 depending on α, d, C, C 1 and N depending on M such that, for
any f0 P Σα

κpM{2q XΘC XΘC1 satisfying εLnpf0q ď rεLn “: rlog n{nsα{p2α`dq,

inf
qxn

sup
fPΣακpMq,

}f´f0}8ď2rεLn

Pr
f

“

Lppxn; fq ě rεLn
‰

ě
1

3
for all n ě N. (3.20)

Intuitively, the apparent gap demonstrated by Theorems 5 and 6 between the active and pas-
sive query models stems from the observation that, a passive algorithm A only has access to
uniformly sampled query points x1, . . . , xn and therefore cannot focus on a small level set of f
in order to improve query efficiency. In addition, for functions that grow faster when moving
away from their minima (implying a larger value of β), the gap between passive and active query
models becomes bigger as active queries can more effectively exploit the restricted level sets of
such functions.

3.2 High-dimensional derivative-free optimization
Consider optimizing an unknown function f : Rd Ñ R in very high dimensions: so high that d
even exceeds the number of queries allowed n.

In such settings, additional sparsity type assumptions are mandatory to ensure identifiability,
similar to high-dimensional regression problems in statistics (van de Geer, 2000). Such sparsity
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assumptions were reflected assumption (A5) in the next section, which we motivate from two
real-world example applications of hyper-parameter tuning and visual stimuli optimization.

3.2.1 Assumptions and motivations

We make the following assumptions on the target function f : X Ñ R to be optimized:

(A1) (Unconstrained convex optimization): We take X “ Rd and assume that f is convex, i.e.
for all x, x1 P X and λ P r0, 1s, fpλx` p1´ λqx1q ď λfpxq ` p1´ λqfpx1q.

(A2) (Minimizer of bounded `1-norm): We assume there exists x˚ P X such that fpx˚q “ f˚ “
infxPX fpxq and }x˚}1 ď B; x˚ does not have to be unique.

(A3) (Sparsity of gradients): We assume that f is differentiable and that there exist H ą 0,
s ! d such that }∇fpxq}0 ď s and }∇fpxq}1 ď H for all x P X , where }z}0 and }z}1 are
the `0 and `1 vector norms; the support of∇fpxq could potentially vary with x P X .

(A4) (Weak sparsity of Hessians): We assume that f is twice differentiable and there exists
H ą 0 such that }∇2fpxq}1 ď H for all where }A}1 :“

řd
i,j“1 |Aij| is the entry-wise `1

norm of matrix A.

(A3) and (A4) are key assumptions in our paper, which assumes the gradients of f are sparse,
and places a weaker sparsity assumption on the Hessian matrices that constrains their `1 norm
rather than `0 norm. We also note that, assuming }∇fpxq}8 and }∇2fpxq}8 are both bounded,
both (A3) and (A4) are implied by the following stronger but more intuitive “function sparsity”
assumption:

(A5) (Function sparsity): there exists S Ď rds, |S| ď s and fS : R|S| Ñ R such that fpxq ”
fSpxSq, where xS P R|S| is the restriction of x P Rd on S.

We motivate Assumptions (A3), (A4) and (A5) from both theoretical and practical perspec-
tives. Theoretically, the sparsity assumption allows us to estimate the gradient at a specific point
using n ! d noisy zeroth-order queries. On the other hand, (A5) is at least approximately
satisfied in many practical applications of zeroth-order optimization. For example, in hyper-
parameter tuning problems of learning systems, it is usually the case that the performance of the
system is insensitive to some hyper-parameters, essentially implying the sparsity of the gradients
and Hessians. Other examples include the optimization of visual stimuli so that certain types
of neural responses are maximized or optimizing experimental parameters (pressure, tempera-
ture, etc.) so that the resulting synthesized material has optimal quality (Nakamura et al., 2017;
Reeja-Jayan et al., 2012). For the visual stimuli optimization example, it is well known that the
hierarchical organization of the human visual system in the brain into regions such as V1, V4,
LO, IT etc. is precisely based on the neural response in these regions being sensitive to specific
subsets of low-level and higher-level features such as edges and curves. This in turn implies that
the underlying function to be optimized satisfies (A5). Finally, we remark that similar sparsity
assumptions have been considered in past work (Bandeira et al., 2012; Lei et al., 2017) to obtain
improved rates of convergence for optimization methods.
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3.2.2 The zeroth-order mirror descent framework
Mirror descent (MD) (Yudin & Nemirovskii, 1983) is a classical method in optimization when
smoothness and the domain geometry are measured in (possibly) non-Euclidean metrics. The
MD algorithm was applied to stochastic optimization with noisy first-order oracles in the papers
(Agarwal et al., 2012; Nemirovski et al., 2009) and was also studied in the work (Lan, 2012) for
strongly smooth composite functions with accelerated rates, and in the works (Ghadimi & Lan,
2012, 2013a) for strongly convex composite functions.

Let ψ : X Ñ R be a continuously differentiable, strictly convex function. The Bregman
divergence ∆ψ : X ˆ X Ñ R is defined as

∆ψpx, yq :“ ψpyq ´ ψpxq ´ x∇ψpxq, y ´ xy. (3.21)

Let } ¨ }ψ be a norm and } ¨ }ψ˚ be its dual norm, defined as }z}ψ˚ :“ suptzJx : }x}ψ ď 1u. One
important class of Bregman divergences is those that are κ-strongly convex with respect to the
chosen norm, i.e. they satisfy ∆ψpx, yq ě

κ
2
}x´ y}2ψ.

Many choices of ψ lead to a strongly convex Bregman divergence. In this paper we consider
the `a norm as choice of ψ: ψapxq :“ 1

2pa´1q
}x}2a for 1 ă a ď 2. It was proved in (Agarwal et al.,

2012; Srebro et al., 2011) that ψa leads to a valid Bregman divergence that satisfies 1-strong
convexity with respect to } ¨ }a. For the a “ 1 case, we use ψa1 with a1 “ 2 log d

2 log d´1
as its potential,

which satisfies ∆ψpx, yq ě
κ
2
}x´ y}21 with κ “ e.

With this setup, the MD method iteratively computes

xt`1 :“ arg min
xP rX

 

ηt∇fpxtqJpx´ xtq `∆ψpx, xtq
(

,

where tηtuTt“1 is a sequence of step sizes and rX Ď X is a subset of the domain X of f .
In zeroth-order optimization settings, the exact gradient ∇fpxtq is not available. Instead, we

use an estimated gradient rgt « ∇fpxtq to replace∇fpxtq in the mirror descent update rules. We
shall refer to this algorithm as zeroth-order mirror descent, whose performance (convergence
rates) would depend on the properties of the gradient estimates rgt.

3.2.3 Sparse gradient estimation via the de-biased Lasso
In this section we introduce the Lasso and the de-biased Lasso gradient estimator to estimate
sparse gradients. More specifically, for any xt P X , the estimator uses n ! d samples to estimate
the unknown gradient gt :“ ∇fpxtq. The high-level idea is to consider n ! d random samples
near the point xt, and to then formulate the gradient estimation problem as a biased linear re-
gression system. The Lasso procedure (and its de-biased variants) can then be applied to obtain
a consistent estimator under certain sparsity assumptions on tgtuTt“1.

Fix an arbitrary xt P X and let z1, . . . , zm P t˘1ud be m samples of i.i.d. binary random
vectors such that Prrzij “ 1s “ Prrzij “ ´1s “ 1{2, where i P rns and j P rds. Let δ ą 0
be a probing parameter which will be specified later, and y1 “ fpxt ` δz1q ` ξ1, . . . , yn “
fpxt ` δzmq ` ξm be m observations. Using first-order Taylor expansions with Lagrangian
remainders, the normalized ryi :“ yi{δ can be written as

ryi “
fpxt ` δziq ` ξi

δ
“
fpxtq

δ
` gJt zi `

δ

2
zJi Htpκi, ziqzi ` δ

´1ξi :“ µt ` g
J
t zi ` εi, (3.22)
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where µt “ δ´1fpxtq, εi “ δ
2
zJi Htpκi, ziqzi ` δ´1ξi and Htpκi, ziq “ ∇2fpxt ` κiδziq for some

κi P p0, 1q.
Eq. (3.22) shows that, essentially, the question of estimating gt “ ∇fpxtq can be cast as

a linear regression model with design tziumi“1, unknown parameters pµt, gtq P Rd`1 and noise
variables tεiuni“1 whose bias (i.e., Erεi|zi, xts) goes to 0 as δ Ñ 0, at the expense of increasing
variance. Since gt is a sparse vector as a consequence of (A3), one can use the Lasso (Tibshirani,
1996) to obtain an estimate of gt and µt:

ppgt, pµtq “ arg min
gPRd,µPR

1

m

m
ÿ

i“1

pryi ´ g
Jzi ´ µq

2
` λ}g}1 ` λ|µ|, (3.23)

where λ ą 0 is a regularization parameter that will be specified later.
The following lemma shows that with a carefully chosen λ, pgt is a good estimate of gt in both

`8 and `1 norms.
Lemma 13. Suppose (A1) through (A4) hold. Suppose also that m “ Ωps2 log dq, m ď d and
λ — δ´1σ

a

log d{m` δH . Then with probability 1´Opd´2q

maxt|pµt ´ µt|, }pgt ´ gt}8u À
σ

δ

c

log d

m
` δH.

Furthermore, with probability 1´Opd´2q it holds that }pgt ´ gt}1 ď 2s}pgt ´ gt}8.
Lemma 13 follows by the standard `1 and `8 error bound analyses of the Lasso estimator

(Bickel et al., 2009; Lounici, 2008). However, our model has a subtle difference from the stan-
dard high-dimensional regression model in that Erεi|zi, xts are not exactly zero. and we provide
a detailed proof in the Appendix.
Remark 11. The penalization of µ in Eq. (3.23) is in general unnecessary as it is a single com-
ponent; however, we decide to keep this penalization term to simplify our analysis. Neither the
estimation error nor the selection of the tuning parameter λ depend on knowledge of µt.
Remark 12. Lemma 13 reveals an interesting bias-variance tradeoff controlled by the “probing”
parameter δ ą 0. When δ is close to 0, the bias (reflected by Erεi|zi, xts) resulting from the
second-order Lagrangian remainder term δ

2
zJi Htpκi, ziqzi is small; however, the variance of pgt is

large because the variance of the “stochastic” noise term ξi{δ increases as δ Ñ 0; on the other
hand, for large δ the stochastic variance is reduced but the bias from first-order approximation of
fpxtq increases.

We further introduce the de-biased Lasso estimator (Javanmard & Montanari, 2014; Van de
Geer et al., 2014; Zhang & Zhang, 2014) to reduce bias of the Lasso estimator for the purpose
of constructing confidence intervals for low-dimensional model components. In our application,
the bias-reduced gradient estimate allows stochastic noise to concentrate across epochs and leads
to improved convergence rates.

Let rYt “ pry1, . . . , rymq P Rn and Zt “ pz1, . . . , zmq P Rnˆd be the vector forms of tryiumi“1

and tziumi“1. Since the design points zi are i.i.d. Rademacher variables, the de-biased gradient
estimator rgt takes a particularly simple form:

rgt :“ pgt `
1

m
ZJt p

rYt ´ Ztpgt ´ pµt ¨ 1mq. (3.24)
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Here ppgt, pµtq is the Lasso estimator defined in Eq. (3.23) and 1m “ p1, . . . , 1q P Rm is the
m-dimensional vector of all ones.
Lemma 14. Suppose m “ Ωps2 log dq. With probability 1´Opd´2q it holds that

rgt “ gt ` ζt ` γt;

where ζt is a d-dimensional random vector such that, for any a P Rd, xζt, ay conditioned on xt is
a centered sub-exponential random variable with parameters ν “

a

m{2¨α and α À σ}a}2{δm;
and γt is a d-dimensional vector that satisfies

}γt}8 À Hδ `
σs log d

δm
almost surely.

Comparing Lemma 14 with the error bound obtained for the Lasso estimator pgt in Lemma 13,
it is clear that the entry-wise bias (i.e., }γt}8) is reduced from OpδH `

a

log d{δnq to OpδH `

s log d{δnq. Such de-biasing is at the cost of inflated stochastic error ζt, which means that unlike
pgt, rgt is not a good estimator of gt in the `1 or `2 norm.

3.2.4 Rates of convergence
The following theorem is the main result on the rates of convergence of our proposed zeroth-
order mirror descent algorithm with sparse gradient estimates.
Theorem 7. Suppose (A1) through (A4) hold. Suppose also that n “ Ωps3 log2 d`sp1`Hq2p1`

B4H4 log2 dqq, n ď d and that we choose the parameters m :“ tp1`Hq
?
snu, ηt ” B

b

n log d
n

,

and δt ”
a

s log d{m. Then with probability 1´Opd´1q

Efppxnq ´ fpx˚q À ξσ,sB
a

log d

„

p1`Hq2s

n

1{4

` rOpn´1{2
q,

where ξσ,s “ 1 ` σ ` σ2{s, and pxn is the average of all txtuT
1

t“1 with T 1 being the number of
“epochs” in which m design points are constructed. In the Op¨q notation we hide polynomial
dependency on σ, s,H,B and log d. The À notation does not hide any dependency on problem
dependent constants.

It is possible to further improve the convergence rates in Theorem 7 with additional smooth-
ness conditions on∇2f , with a small loss of computational efficiency. Formally, we assume:
(A6) (Hessian smoothness). There exists L ą 0 such that for all x, x1 P X ,

}∇2fpxq ´∇2fpx1q}1 ď L}x´ x1}8

Recall that }A}1 “
ř

i,j |Aij| denotes the entry-wise `1 norm of a matrix A.
If f is three-times differentiable, then (A6) is implied by the condition that }∇3fpxq}1 ď L

for all x P X , where }A}1 :“
ř

i,j,k |Aijk| is the entry-wise `1 norm of a third order tensor.
However, (A6) in general does not require third-order differentiability of f .

Recall the de-biased Lasso gradient estimator rgtpδq in Eqs. (3.23,3.24) corresponding to a
probing step size of δ. Under the additional condition (A6), the analysis in Lemma 14 can be
strengthened as below:
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Lemma 15. Suppose (A1) through (A4) and (A6) hold. Suppose also that n “ Ωps2 log dq, n ď d
and λ — δ´1σ

a

log d{n` δH . Then with probability 1´Opd´2q

rgtpδq “ gt `
δ

2
E
“

pzJHtzqz
‰

` rζtpδq ` rβtpδq ` rγtpδq,

where gt “ ∇fpxtq, Ht “ ∇2fpxtq; for any a P Rd, xrζtpδq, ay conditioned on xt is a cen-
tered d-dimensional sub-exponential random variable with parameters ν2 “

a

n{2 ¨ α and
α À σ}a}2{δn; xrβtpδq, ay conditioned on xt is a centered d-dimensional sub-Gaussian random
variable with parameter ν À δH}a}1{

?
n; γtpδq is a d-dimensional vector that satisfies

}rγtpδq}8 À Lδ2
`
σs log d

nδ
` sδH

c

log d

n
.

Note that rζtpδq and rβtpδq might be correlated conditioned on xt. Comparing Lemma 15 with
Lemma 14, we observe that the bias term rγtpδq is significantly smaller (Opδ2q instead of Opδq);
while the second term δ

2
ErpzJHtzqzs is still a bias term with non-zero mean, it only depends

on δ and can be easily removed. This motivates the following definition of a “twice de-biased”
gradient estimator:

The twice de-biased estimator:

rgtw
t :“ 2rgtpδ{2q ´ rgtpδq. (3.25)

Corollary 2. Suppose the conditions in Lemma 15 are satisfied. Then with probability 1 ´
Opd´2q,

rgtw
t ´ gt “ rζt ` rβt ` rγt,

where rζt “ 2rζtpδ{2q ´ rζtpδq, rβt “ 2rβtpδ{2q ´ rβtpδq and rγt “ rγtpδ{2q ´ rγtpδq.
The twice de-biased estimator is, in principle, similar to the “twicing” trick in nonparametric

kernel smoothing (Newey et al., 2004) that reduces estimation bias. In particular, Corollary 2
shows that the δ

2
ErpzJHtzqzs bias term is cancelled by the “twicing” trick, and the remaining

bias term rγ is an order of magnitude smaller than γ in the bias term before twicing (e.g., Lemma
14). We also remark that the twice de-biased estimator rgtw

t does not significantly increase the
computational burden, because the method remains first-order and only (two copies of) the de-
biased gradient estimate needs to be computed.

Plugging the “twice” de-biased gradient estimator rgtw
t into the stochastic mirror descent pro-

cedure and choosing tuning parameters n, λ, δ and η appropriately, we obtain the following im-
proved convergence rate:
Theorem 8. Suppose (A1) through (A4) and (A6) hold. Suppose also that T “ Ωps3 log2 d `

p1 ` Lq2s2 ` H2B2p1 ` Lqs log dq and T ď d. Let η :“ Bn2{3
b

log d
T

, n :“ tp1 ` Lqs2{3
?
T u

and δ :“ ps log d{nq1{3. Then with probability 1´Opd´1q

Efppxnq ´ fpx˚q À rξσ,sB
a

log d

ˆ

p1` Lqs2{3

T

˙1{3

` rOpT´5{12
q,
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(c) s “ 20, d “ 100

Figure 3.2: Sparse quadratic optimization with identity quadratic term.
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Figure 3.3: Sparse quadratic optimization with polynomial decay of eigenvalues.

where rξσ,s “ p1` σ ` σ
2{s2{3q and pxn is the average of all txtuT

1

t“1 with T 1 being the number of
epochs in which 2m design points are constructed.

As a simple illustration consider the following example:
Example 3. Consider a quadratic function fpxq “ 1

2
px´ x˚qJQpx´ x˚q with (unknown) Q ľ 0

being positive semi-definite and supported on S Ď rds with |S| ď s, meaning that Qij “ 0 if
i R S or j R S. It is easy to verify that f satisfies (A1) through (A5), and also (A6) with L “ 0
because∇2fpxq ” Q, independent of x. Subsequently, applying results in Theorem 8 we obtain
a convergence rate of OpT´1{3q.

More broadly, compared to Theorem 7, the stochastic mirror descent algorithm with the
twice de-biased gradient estimator (rgtw

t ) has the convergence rate of OpT´1{3q, which is a strict
improvement over the OpT´1{4q rate in Theorem 7. Such improvement is at the cost of the
additional assumption of Hessian smoothness (A6); however, the optimization algorithm remains
almost unchanged and no second-order information is required at runtime.

3.2.5 Numerical results
We compare our proposed algorithm with the baseline method on synthetic function examples,
including low-dimensional zeroth-order optimization (proposed in (Flaxman et al., 2005)) as
well as the intuitive method of first doing Lasso support selection and then low-dimensional
zeroth-order optimization on the selected variables. We use GD to represent “zeroth order”
gradient descent algorithm proposed in (Flaxman et al., 2005), Lasso-GD to represent the model-

53



0 50 100

Oracle Evaluation  1000

-6

-4

-2

0

2

4

lo
g

(A
v
g

 C
u

m
-R

e
g

re
t) GD

Lasso-GD

MD

(a) s “ 5, d “ 100

0 50 100

Oracle Evaluation  1000

-4

-2

0

2

4

6

lo
g

(A
v
g

 C
u

m
-R

e
g

re
t) GD

Lasso-GD

MD

(b) s “ 10, d “ 100

0 50 100

Oracle Evaluation  1000

-2

0

2

4

6

8

lo
g

(A
v
g

 C
u

m
-R

e
g

re
t) GD

Lasso-GD

MD

(c) s “ 20, d “ 100

Figure 3.4: Sparse fourth-degree polynomial optimization with identity quadratic term.

selection-then-optimize approach, and MD to represent the zeroth-order mirror descent algorithm
with sparse gradient estimates. For our synthetic function examples, we first construct a convex
low-dimensional function fS : R|S| Ñ R on a uniformly chosen subset S Ď rds with size s, and
then “extend” fS to f defined on the high-dimensional domain Rd by fpxq ” fSpxSq. Functions
constructed as such naturally satisfy the sparsity assumptions (A3), (A4) and (A5). In all plots
we start at the 1000th iterations (oracle evaluations) of all algorithms to avoid clutter caused by
the volatile burn-in phases. Thus, the starting points in the plots are slightly different for different
algorithms.

In Figure 3.2 we consider sparse quadratic optimization problem with fSpxSq “ xJSQxS `
bJxS where we set Qii “ 1 and bi “ 1 for i P S and other entries to 0. In Figure 3.3 we
consider sparse quadratic optimization problem with fSpxSq “ xJSQx ` bJxS where we set
Qii “ i´γ where γ is the eigenvalue decay rate and bi “ 1 for i P S and other entries to
0. In Figure 3.4 we consider sparse degree-4 polynomial optimization problem with fSpxq “
|pxS ´ bqJQpxS ´ bq|2 ` pxS ´ bqJQpxS ´ bq where we set Qii “ 1 and bi “ 1 for i P S and
other entries to 0. All hyper-parameters are tuned by grid search. The cumulative optimization
error 1

t

řt´1
t1“0 fpxtq ´ f

˚ is reported for all algorithms and selected time epochs t ď n.
We observe that in all our simulation settings, the vanilla gradient descent algorithm is dom-

inated by our proposed algorithms. Our simulation results also suggest that the mirror descent
algorithm is superior to the successive component selection algorithm. MD is also easier to use in
practice as it has fewer parameters. Thus, we recommend mirror descent algorithm for practical
use.

3.2.6 Extension to `p geometry: the unconstrained case

High-dimensional derivative-free stochastic optimization arises in many scientific and engineer-
ing applications. While most of the time additional structural assumptions on the objectives or
the optimal solutions do exist, exact sparsity conditions could be too strong to hold in many cases.
In this section we discuss how the zeroth-order mirror descent framework could be extended to
cases where conditions weaker than the sparsity structural assumptions are imposed.

For p P p1, 2s and x P Rd, let }x}p :“ p
řd
i“1 |xi|

pq1{p denote the vector-`p norm of x, and
q “ 1{p1 ´ 1{pq be the dual norm of `p (if p “ 1 then define q “ 8). The following conditions
are imposed upon the objective function f : X Ñ R as well as its minimizer x˚:
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(B1) (Unconstrained optimization): X “ Rd;

(B2) (Bounded minima): there exists x˚ P X such that fpx˚q “ minxPX fpxq and }x˚}p ď B;

(B3) (Bounded gradients): f is differentiable on Rd and furthermore supx }∇fpxq}q ď L.
The constraint }x˚}p ď B for p P r1, 2s is a weaker form of constraining the optimal solution

x˚ to be sparse. More specifically, as the norm p moves from 2 to 1, the optimal solution x˚

has to be sparser in order to satisfy the more stringent constraint }x˚}p ď B. Nevertheless,
the condition is considerably weaker than the exact sparsity constraint (e.g., }x˚}0 ď s), as the
minimizer x˚ itself could still be dense and spread across all its components.

Our algorithmic framework is the follows:
1. First, we construct a smoothed version rfpxq :“ Eu„µrfpx` uqs, where µ is a distribution

supported on X “ Rd. The smoothed function rf is constructed so that | rfpxq ´ fpxq| is
small, and furthermore the gradient∇ rfpxq can be unbiasedly estimated;

2. At each iteration t, the algorithm observes yt “ fpxt ` vtq for some random variable vt
and construct an unbiased estimator pgt P Rd of gt :“ ∇ rfpxtq such that Epgt “ gt;

3. The mirror descent update is preformed:

xt`1 P arg min
xPX

tηtxpgt, xy `Dψpx, xtqu , (3.26)

where tηtu are the step sizes, and Dψpx, yq “ ψpxq´ψpyq´x∇ψpyq, x´yy is a Bregman
divergence with respect to a potential function ψ, which is κ-strongly convex with respect
to } ¨ }p (i.e., Dψpx, yq ě κ}x´ y}2p{2).

Let p be the density of µ. The gradient estimates pgt are constructed via the celebrated Stein-
Hudson identity (Hudson, 1978; Stein, 1981) which asserts that, under minimal regularity condi-
tions, for any differentiable h : Rd Ñ R,

E rhpuq∇ log ppuqs “ ´E r∇hpuqs where u „ µ. (3.27)

Consider hpuq ” fpx` uq and recall that rfpxtq “ Eµrfpxt ` uqs. Eq. (3.27) then reduces to

∇ rfpxtq “ Eµ rfpxt ` uq∇ log ppuqs . (3.28)

Hence, a natural estimator of gt “ ∇ rfpxtq is

pgt :“ pyt ´ y
1
tq∇ log pputq where yt “ fpxtq ` ξt, y1t “ fpxt ` utq ` ξ

1
t, ut „ µ. (3.29)

Remark 13. The yt term acts like a control variate to reduce variance and to avoid dependency
on the magnitude of |fpxtq|.

Let p P p1, 2s be the fixed norm parameter. Consider the generalized Gaussian distribution
(see, e.g., Song & Gupta (1997); Toulias & Kitsos (2014))

ppxq “ ppx1, ¨ ¨ ¨ , xdq “
d
ź

i“1

pipxiq where pipxiq “
p1´1{p

2δΓp1{pq
exp

"

´
|xi|

p

pδp

*

. (3.30)
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When p P p1, 2s, log p is differentiable everywhere, and the gradient of log p takes the form of
´∇ log ppxq “ rx{δp, where rx “ rsgnpx1q|x1|

p´1, ¨ ¨ ¨ , sgnpxdq|xd|
p´1s. The gradient estimate rgt

can then be written as

pgt “ py
1
t ´ ytqδ

´p
rut where rut “ rsgnput1q|ut1|

p´1, ¨ ¨ ¨ , sgnputdq|utd|
p´1
s. (3.31)

The following lemmas establish several properties of the gradient estimate rgt (assuming (B1)
through (B3) hold):
Lemma 16. pgt is an unbiased estimator of gt, meaning that Epgt “ gt “ ∇ rfpxtq.
Lemma 17. | rfpxq ´ fpxq| ď LEµr}u}ps À Lp1` δqδd1{p log d for all x P X .
Lemma 18. Eµ}pgt}2˚ ď Eµrp2σ2 ` L2}u}2pq}∇ log ppuq}2qs À σ2p1 ` δqδ´2d2{q log2 d ` L2p1 `

δqd2 log4 d.
Combining Lemmas 16, 17 and 18, we arrive at the following theorem on the convergence

rate of the zeroth-order mirror descent with Stein-Hudson gradient estimates, when step sizes
(tηtu) and probing radius (δ) are carefully selected:
Theorem 9. Suppose (B1) through (B3) hold, and the parameters ηt ” η and δ are selected

as δ — pσ2B{L2nq1{4 ¨ d1{2´1{p, η —
b

B{pnˆ pσ2δ´2d2{q log2 d` L2d2 log4 dqq. Then for
sufficiently large n, the average pxn “ p

řn
t“1 xtq{n satisfies

Efppxnq ´ fpx˚q “ rO

˜

„

σ2d2BL

n

1{4

`

c

d2BL2

n

¸

. (3.32)

Remark 14. Theorem 9 holds when the origin is taken as the initial point (i.e., x0 “ 0), and
n is sufficiently large such that δ ď 1. Also, in the rOp¨q notation we omit poly-logarithmic
dependency on d.
Remark 15. Regardless of the values of p and q appearing in the conjugate norms that define the
boundedness of x˚ and ∇f , Eq. (3.32) has the same dependency on domain dimension d.
Remark 16. In the noiseless case σ “ 0 much better convergence rate is reflected in Eq. (3.32);
i.e., n´1{2 instead of n´1{4. This is similar to the “two-point query” models studied in the liter-
ature (Agarwal et al., 2010; Duchi et al., 2015; Shamir, 2017) which were known to yield faster
convergence rates for the zeroth-order optimization problem.

3.2.7 Extension to `p geometry: the constrained case
One disadvantage of the Stein-Hudson’s gradient estimator is that the support of the probing
distribution µ spans the entire Rd domain, making it applicable only in unconstrained optimiza-
tion. While certain truncation arguments could be applied when constraints are present, such
approaches are quite messy and difficult to analyze.

To overcome such difficulties, in this section we consider alternative gradient estimates for
`p geometry whose probing distribution is supported on a compact set, and are therefore more
appropriate for constrained optimization when the optimal solution x˚ is not too close from the
boundary.
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More specifically, let K Ă Rd be a non-empty, compact symmetric 4 convex set in Rd. Let
νK and σBK be the uniform measure on K and its boundary BK, respectively. For any convex,
differentiable function f : Rd Ñ R, a “smoothed version” rf : Rd Ñ R is defined as

rfpxq :“ Eu„νK rfpx` δuqs , (3.33)

where δ ą 0 is a tuning parameter. Define also ρpKq :“ vold´1pBKq{voldpKq and `pvq P Rd the
outer normal vector at v on BK. The gradient estimate pgt of∇ rfpxtq is then defined as

pgtpxtq “ δ´1ρpKqftpztq`pvtq where zt “ xt ` δvt, vt „ σBK . (3.34)

For fixed p P p1, 2s norm parameter, the convex body K is taken to be the unit `p ball
Bdp “ tx P Rd : }x}p ď 1u. For such K, the outer normal vector `pvq is well-defined for all
v P BK, taking the form of

r`pvqsi “ sgnpviq ¨ |vi|
p´1
{}v}p´1

2pp´1q where }v}p´1
2pp´1q “

g

f

f

e

d
ÿ

j“1

|vj|2pp´1q.

The following lemmas establish several properties of the gradient estimate pgt, as well as the
approximation error of rf in terms of the probing convex body K.
Lemma 19. For any xt P Rd, ∇ rfpxtq “ Epgtpxtq.
Lemma 20. For any x P Rd, p P p1, 2s and q “ 1{p1´1{pq, | rfpxq´fpxq| ď δL ¨Eu„νpKqr}u}ps.

Combining Lemmas 19, 20 and using the potential function ψpxq “ 1
p´1
}x}2p, by standard

analysis of mirror descent algorithms ((Agarwal et al., 2012; Beck & Teboulle, 2003; Yudin &
Nemirovskii, 1983), see also Eq. (3.138)), we have the following result:
Lemma 21. Suppose (B2), (B3) hold and |fpxq| ď C for all x P X . Suppose also that }x˚}p ď b,
and define pxn “ p

řn
t“1 xtq{n. Then

Efppxnq ´ fpx˚q À
b

ηn
` η ¨max

tďn

b

E}pgtpxtq}2q ` δL ¨ Eu„νpKqr}u}ps

À
b

ηn
` η ¨

ρpKqC

δ

b

EσBK r}`pvq}2qs ` δL.

From Lemma 21, it remains to upper bound ρpKq and EσBK r}`pvq}2qs as well as the selection
of appropriate values of η and δ. This is accomplished by the following two key lemmas:
Lemma 22. For any p P p1,8q, we have

lim
dÑ8

ρpBdpq
d1{2`1{p

“

d

κpp, 2pp´ 1qq

κpp, pq2pp´1q{p
where κpp, rq :“

Γpp1` rq{pq

Γp1{pq
. (3.35)

4A convex set K Ă Rd is symmetric if for all x P Rd, x P K ðñ ´x P K.
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Lemma 23. For any pair of conjugate norms p, q P p1,8q, 1{p ` 1{q “ 1, there exists a finite
positive constant Cp such that for sufficiently large d, for K “ Bdp,

Ev„σBK r}`pvq}
2
qs ď Cp ¨ d

1{q´1{p. (3.36)

Combining Lemmas 21, 22 and 23, we arrive at the following theorem:
Theorem 10. Under conditions (B2), (B3) and the assumptions that |fpxq| ď C for all x P X
and x˚ ` v P X for all v P δBdp, if η —

a

B{nL2 and δ —
a

BCd{L ¨ n´1{4, we have

Efppxnq ´ fpx˚q À
?
BLd ¨ n´1{4.

3.3 Non-stationary optimization with local variation criteria
In this section we consider a non-stationary setting of nonparametric optimization, in which the
underlying function f is allowed to slightly change over time.

More specifically, at each time epoch t there is a different unknown function ft : X Ñ R to be
optimized, associated with its minimizer x˚t P arg minxPX ftpxq. At each time epoch t a policy
(algorithm) π queries a specific point xt P X and receives noisy feedback ftpxtq ` ξt, where
ξt „ N p0, 1q. The objective is to minimize the dynamic regret (or strong regret) of txtuTt“1:

Rπ
pfq :“ Eπ

T
ÿ

t“1

ftpxtq ´ ftpx
˚
t q. (3.37)

Apart from classical convexity and smoothness assumptions, additional conditions are re-
quired to constrain the changes between neighboring objectives ft and ft`1 to make the dynamic
regret minimization problem feasible.

3.3.1 Backgrounds and assumptions
Apart fromX being closed convex and f1, ¨ ¨ ¨ , fT being convex and differentiable, we also make
the following additional assumptions on the domain X and functions f1, ¨ ¨ ¨ , fT :
(A1) (Bounded domain): there exists constant D ą 0 such that supx,x1PX }x´ x

1}2 ď D;

(A2) (Bounded function and gradient): there exists constant H ą 0 such that supxPX |ftpxq| ď
H and supxPX }∇ftpxq}2 ď H;

(A3) (Non-empty interior): the interior of X is non-empty; that is, X o ‰ H;

(A4) (Smoothness): there exists constant L ą 0 such that ftpx1q ď ftpxq `∇ftpxqJpx1 ´ xq `
L
2
}x1 ´ x}22 for all x, x1 P X .

(A5) (Strong convexity): there exists constant M ą 0 such that ftpx1q ě ftpxq `∇ftpxqJpx1 ´
xq ` M

2
}x1 ´ x}22 for all x, x1 P X .
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The assumptions (A1), (A2) are standard assumptions that were imposed in previous works
on both stationary and non-stationary stochastic optimization (Agarwal et al., 2013; Besbes et al.,
2015; Flaxman et al., 2005; Shamir, 2017). The conditions (A4) and (A5) concern second-
order properties of ft and enable smaller regret rates for gradient descent algorithms. We note
that the condition MId ĺ ∇2ftpxq ĺ LId, @x P X in (Besbes et al., 2015) (see Eq. (10) in
(Besbes et al., 2015)) is stronger and implies our (A4) and (A5) since we do not assume that
ft is twice differentiable. We also consider parameters D,H,L,M in (A1)–(A5) and domain
dimensionality d as constants throughout the paper and omit their (polynomial) multiplicative
dependency in regret bounds.

3.3.2 Local variation criteria
We generalize the results of (Besbes et al., 2015) so that local spatial and temporal changes of
smooth and strongly convex function sequences are taken into consideration. For any measurable
function f : X Ñ R, define

}f}p :“

#

´

1
volpX q

ş

X |fpxq|
pdx

¯1{p

1 ď p ă 8;

supxPX |fpxq| p “ 8.
(3.38)

Here volpX q “
ş

X 1dx is the Lebesgue measure of the domain X and is finite because of the
compactness of X . We shall refer to }f}p as the Lp-norm of f in the rest of this paper. (Conven-
tionally in functional analysis the Lp norm of a function is defined as the unnormalized integra-
tion

`ş

X |fpxq|
pdx

˘1{p. Nevertheless, we adopt the volume normalized definition in this paper
for convenience. The Minkowski’s inequality }f`g}p ď }f}p`}g}p, as well as other basic prop-
erties of Lp norm, remain valid.) Also, for a sequence of convex functions f1, ¨ ¨ ¨ , fT : X Ñ R,
define the Lp,q-variation functional of f “ pf1, ¨ ¨ ¨ , fT q as

Varp,qpfq :“

#

´

1
T

řT´1
t“1 }ft`1 ´ ft}

q
p

¯1{q

1 ď p ď 8, 1 ď q ă 8;

sup1ďtďT´1 }ft`1 ´ ft}p 1 ď p ď 8, q “ 8.
(3.39)

Note that in both Eqs. (3.38) and (3.39) we restrain ourselves to convex norms p ě 1 and q ě 1.
We can then define function classes

Fp,qpVT q :“ tf : Varp,qpfq ď VT u , (3.40)

which serves as the budget constraint for a function sequence f . The definition of Fp,q is more
general than F8,1 introduced in (Besbes et al., 2015) since it better reflects the spatial and tem-
poral locality of f in the subscripts p and q.
Example 4 (spatial locality). Let X “ r0, 1s. Consider univariate piecewise cubic spline func-
tions ftpxq “

řm
i“1 Irx P Xis ¨ patix3 ` btix

2 ` ctix` dtiq, where Ir¨s is the indicator function,
tXiumi“1 is a uniform partition of X “ r0, 1s (i.e., Xi “

“

i´1
m
, i
m

‰

) and tati, bti, cti, dtiumi“1 are
selected such that ft is strongly convex and sufficiently smooth. Also suppose that ft and ft`1

differ only on two neighboring pieces Xi Y Xi`1, and the difference on Xi Y Xi`1 between ft
and ft`1 is uniformly bounded. Formally, ftpxq “ ft`1pxq for all x P X zpXi Y Xi`1q and
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supxPXiYXi`1
|ftpxq ´ ft`1pxq| ď δ ă 8. We then have that (noting that volpX q “ 1 and

volpXi Y Xi`1q “ 2{m)

}ft ´ ft`1}p “

ˆ
ż

XiYXi`1

|ftpxq ´ ft`1pxq|
pdx

˙1{p

ď δ ¨ pm{2q´1{p.

Because δ ¨ pm{2q´1{p is an increasing function of p, the parameter p controls the spatial locality
of function changes between epochs. For example, for p “ 1 we have that }ft ´ ft`1}1 “ 2δ{m
and for p “ 8 we have that }ft´ft`1}8 “ δ. Therefore, when the number of regions m is large,
meaning that the changes in functions are local, }ft ´ ft`1}1 is much smaller than }ft ´ ft`1}8

and captures the concept of local spatial change of functions. In other words, when VT is fixed
the function class F1,qpVT q is richer (i.e., contains more functions) than F8,qpVT q, meaning that
more functions with local spatial variations are contained in F1,qpVT q compared to F8,qpVT q.
Example 5 (temporal locality). Define δt “ }ft`1´ft}p for t “ 1, ¨ ¨ ¨ , T ´1 to be the amount of
change at epoch t. Suppose a total amount of ∆ change of functions is fixed (i.e.,

řT´1
t“1 δt “ ∆),

and the changes are distributed uniformly across s ă T ´ 1 epochs. That is, δi “ ∆{s for s
epochs in t1, ¨ ¨ ¨ , T ´ 1u and δi “ 0 for the other T ´ 1´ s epochs. We then have that

Varp,qpfq “

ˆ

1

T
¨ s ¨ δq

˙1{q

“ δ ¨ ps{T q1{q.

Because ps{T q1{q is an increasing function of q, the parameter q controls the temporal locality
of function changes. For example, for q “ 1 we have that Varp,1pfq “ δ ¨ s{T and for q “ 8
we have Varp,8pfq “ δ. Therefore, when the number of changes s is small compared to T ,
Varp,1pfq is much smaller than Varp,8pfq and captures the concept of local temporal change of
functions.

3.3.3 Minimax upper bounds

We establish the following upper bounds on the worst-case regret of our designed policy, with
details to be introduced later.
Theorem 11 (Upper bound). Fix arbitrary 1 ď p ă 8 and 1 ď q ă 8. Suppose (A1) through
(A5) hold and 0 ď VT ď 1. Then there exists a computationally efficient policy π and C1 ą 0 as
a polynomial function of log T and log VT such that

sup
fPFp,qpVT q

Rπ1
pfq ď C1 ¨ T ¨ V

2p{p6p`dq
T .

Remark 17 (On the constant C1). The dependency of C1 on domain dimension d and variation
parameters p, q is of the formDd{2p, which arises from our main affinity technical lemma (Lemma
44). Since d, D, and p are all treated as constants in our paper, the quantity Dd{2p is also a
constant. We remark that it does not depend on T or VT , and thus will be much smaller than the
main T ¨ V 2p{p6p`dq

T term.
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Remark 18 (On the term
?
T ). The regret bound in Theorem 11 consists of two terms. The

?
T

term arise from regret bounds for stationary stochastic optimization problems (i.e., VT “ 0),
which were proved in (Hazan & Kale, 2014; Jamieson et al., 2012). The other terms involving
polynomial dependency on VT are the main regret terms for typical dynamic function sequences
whose perturbation VT is not too small.
Remark 19 (The role of the parameter q). We remark that the q parameter does not affect the
optimal rate of convergence in Theorem 12 (provided that q ě 1 is assumed for convexity of
the norms). While this appears counter-intuitive, this is a property of our worst-case analytical
framework, as the function sequence that leads to the worst-case regret is the one that distributes
function changes }ft`1 ´ ft}p evenly across all t P T (see for example our detailed construction
of adversarial function sequences in the online supplement), in which case the Lp,q-variation
measure is the same for all q P r1,8s.
Remark 20 (On the condition VT ď 1). The condition VT ď 1 in Theorem 11 is necessary
for obtaining a non-trivial sub-linear regret. In particular, our lower bound results will show
that for VT “ Ωp1q, no algorithm can achieve sub-linear regret in either feedback models (see
Theorem 12 in the lower bound section). On the other hand, a trivial algorithm that outputs
x1 “ ¨ ¨ ¨ “ xT “ x0 for an arbitrary x0 P X leads to a linear regret.
Remark 21 (Curse of dimensionality). A significant difference between p “ 8 and p ă 8

settings is the curse of dimensionality. In particular, when p ă 8 the (optimal) regret depends
exponentially on dimension d, while for p “ 8 the dependency on VT is independent of d on the
exponent. The curse of dimensionality is a well-known phenomenon in non-parametric statistical
estimation (Tsybakov, 2009).
Remark 22 (Comparing with Besbes et al. (2015)). Besbes et al. (2015) considered the special
case of p “ 8 and q “ 1, and established the following result:

inf
πPPπT

sup
fPFp,qpVT q

Rπ
φpfq — T ¨ V

1{3
T for p “ 8, q “ 1. (3.41)

Note that in Eq. (3.41) we adopt a slightly different notation from Besbes et al. (2015). In
particular, the parameter VT in our paper is 1{T times the parameter VT in (Besbes et al., 2015).
Such normalization is for presentation clarity only (to single out the T term in the regret bounds).

It is clear that our results reduce to Eq. (3.41) as p Ñ 8. In particular, for fixed domain
dimension d we have that limpÑ8 2p{p6p` dq “ 1{3, matching regrets in Eq. (3.41). Therefore,
the result from Besbes et al. (2015) (for strongly convex function sequences) is a special case of
our results.

3.3.4 Policy design
There are two main components in our policy design:

1. A general restarting “meta-policy” from Besbes et al. (2015), where the interval/batch
length ∆T is tuned as a function of p.

2. Within each interval/batch of the meta-policy, a proper sub-policy πs is invoked depending
on the type of the feedback.

We first describe the “meta-policy” based on a re-starting procedure (Besbes et al., 2015):
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META-POLICY (RESTARTING PROCEDURE): input parameters T and ∆T ; sub-policy πs.
1. Divide epochs t1, ¨ ¨ ¨ , T u into J “ rT {∆T s batches B1, ¨ ¨ ¨ , BJ such that B1 “

tb1, ¨ ¨ ¨ , b1u, B2 “ tb2, ¨ ¨ ¨ , b2u, etc., with b1 “ 1, bJ “ T and b``1 “ b` ` 1 for ` “
1, ¨ ¨ ¨ , J´1. The epochs are divided as evenly as possible, so that |B`| P t∆T ,∆T`1u
for all ` “ 1, ¨ ¨ ¨ , J .

2. For each batch B`, ` “ 1, ¨ ¨ ¨ , J , do the following:
(a) Run sub-policy πs with b` and b`, corresponding to fb` , fb``1, ¨ ¨ ¨ , fb` .

The key idea behind the meta-policy is to “restart” certain sub-policy πs after ∆T epochs.
This strategy ensures that the sub-policy πs has sufficient number of epochs to exploit feedback
information, while at the same time avoids usage of outdated feedback. Scalings of ∆T in the
meta-policy is set as ∆T — V

´4p{p6p`dq
T , which is motivated by our proof to our regret upper

bound in Theorem 11.

In the rest of this section we describe the sub-policy πs mentioned in the meta-policy. the
classical approach is to first obtain an estimator of the gradient ∇ftpxtq by perturbing xt along
a random coordinate ej “ p0, ¨ ¨ ¨ , 1, ¨ ¨ ¨ , 0q P Rd. This idea originates from the seminal work
of Yudin & Nemirovskii (1983) and was applied to convex bandits problems (e.g., Besbes et al.
(2015); Flaxman et al. (2005)). Such an approach, however, fails to deliver the optimal rate of
regret when the optimal solution x˚t lies particularly close to the boundary of the domainX . Here
we describe a regularized ellipsoidal (RE) algorithm from Hazan & Levy (2014), which attains
the optimal rate of regret even when x˚t is very close to BX .

The RE algorithm in Hazan & Levy (2014) is based on the idea of self-concordant barriers:

Definition 3 (self-concordant barrier). Suppose X Ď Rd is convex and X o ‰ H. A convex
function ϕ : X o Ñ R is a κ-self-concordant barrier of X if it is three times continuously
differentiable on X o and has the following properties:

1. For any txnu8n“1 Ď X o, if limnÑ8 xn P BX then limnÑ8 ϕpxnq “ `8.

2. For any z P Rd and x P X o it holds that |∇3ϕpxqrz, z, zs| ď 2|zJ∇2ϕpxqz|3{2 and
|zJ∇ϕpxq| ď κ1{2|zJ∇2ϕpxqz|1{2, where ∇3ϕpxqrz, z, zs “ B3

Bt1Bt2Bt3
ϕpx ` t1z ` t2z `

t3zq
ˇ

ˇ

t1“t2“t3“0
.

It is well-known that for any convex set X Ď Rd with non-empty interior X o, there exists
a κ-self-concordant barrier function ϕ with κ “ Opdq, and furthermore for bounded X the
barrier ϕ can be selected such that it is strictly convex; i.e., ∇2ϕpxq ą 0 for all x P X o (Boyd
& Vandenberghe, 2004; Nesterov & Nemirovskii, 1994). For example, for linear constraints
X “ tx : Ax ď bu with A P Rmˆd, a logarithmic barrier function ϕpxq “

řm
i“1´ logpbi ´ aixq

can be used to satisfy all the above properties (note that ai denotes the i-th row of A).

We are now ready to describe the RE sub-policy that handles noisy function value feedback.
The policy is similar to the algorithm proposed in Hazan & Levy (2014), except that noisy func-
tion value feedback is allowed in our policy, while Hazan & Levy (2014) considered only exact
function evaluations. The analysis of our policy is also more involved for dealing with noise.
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SUB-POLICY πs (RE): input parameters b`, b`; constant step size η; self-concordant barrier
ϕ;

1. Select z0 “ argminyPXϕpzq;

2. For t “ 0 to b` ´ b` do the following:
(a) Compute At “ p∇2ϕpztq ` ηMpt` 1qIdq

´1{2, where Id is the identity matrix in
Rdˆd.

(b) Sample ut from the uniform distribution on the unit d-dimensional sphere Sd.
(c) Select xb``t “ zt ` Atut; suffer loss fb``tpxb``tq and obtain feedback yb``t “

fb``tpxb``tq ` ξb``t.
(d) Compute gradient estimate pgt “ d ¨ yb``t ¨ A

´1
t ut.

(e) FTRL update: zt`1 “ argminzPX
řt
τ“0

 

pgJτ z `
M
2
}z ´ zτ}

2
2

(

` η´1ϕpzq.

In step 2(d), the gradient estimate pgt “ d ¨ yb``t ¨ A
´1
t ut satisfies Erpgts « ∇fb``tpytq by the

change-of-variable formula and the smoothness of fb``t. In step 2(e), instead of the projected
gradient step, a Follow-The-Regularized-Leader (FTRL) step is executed to prevent yt`1 from
being too close to the boundary of X . The FTRL step is essentially a mirror descent, which uses
a regularization term (ϕp¨q in our policy) and its associated Bregman divergence to improve the
convergence rates of optimization algorithms measured in non-standard metric. It was shown
in McMahan (2017) (Sec. 6) that the FTRL step is equivalent to mirror descent under minimal
regularity conditions. Finally, step 2(c) is a random perturbation step originally considered
in (Hazan & Levy, 2014). An important aspect of step 2(c) is the clever choice of the matrix
At, which ensures the optimal regret bound even if the optimal solution x˚t is very close to the
boundary of X . More specifically, the following proposition shows that xb``t “ zt`Atut always
belongs to the domain X , justifying the correctness of policy πs.
Proposition 10. Suppose ϕ is strictly convex on X o. Then for any x P X o, δ ě 0 and u P Sd,
x` p∇2ϕpxq ` δIdq

´1{2u P X .

3.3.5 Minimax lower bounds

We prove the following result, establishing a lower bound of worst-case regret possible for any
policy π.
Theorem 12 (Lower bound). Suppose the same conditions hold as in Theorem 11. Then there
exists a constant C3 ą 0 independent of T and VT such that

inf
π

sup
fPFp,qpVT q

Rπ
pfq ě C3 ¨ T ¨ V

2p{p6p`dq
T .

Remark 23. The constant C3 depends polynomially on d and p, q in our construction of adver-
sarial problem instances. We again emphasize that this constant does not depend on either T or
VT .
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3.4 Summary and related works

Optimizing a nonparametric function with access to (noisy) function evaluations only is in gen-
eral a very important questions. With different regularity conditions imposed on the objective
functions (which would certainly depend on the target application domains), the techniques,
analysis and results also differ significantly. In this section, we present our results for low-
dimensional smooth functions, high-dimensional convex functions and also dynamically chang-
ing convex functions.

Due to the very large volume of existing related works, it is certainly impossible to cover all
of them. Below we give representative works on directions that are directly related to our results.

Derivative-free optimization Derivative-free optimization (also known as blackbox/zeroth-
order optimization) is an extensively studied topic in mathematical optimization. Conn et al.
(2009) proved global convergence of first- and second-order trust-region methods for derivative-
free optimization. See also Audet & Dennis Jr (2006); Cartis et al. (2012); Conn et al. (2009);
Dodangeh & Vicente (2016); Kolda et al. (2003); Torczon (1997); Vicente & Custódio (2012)
for the study of other methods. Meanwhile, Bandeira et al. (2012, 2014); Billups et al. (2013);
Chen et al. (2018a); Conn et al. (2008a,b); Powell (2003, 2004); Scheinberg & Toint (2010) con-
sidered trust-region and local probabilistic modeling methods for high-dimensional zeroth-order
optimization problems, in which the problem dimension far exceeds the number of oracle queries
but certain sparsity structures on gradients/hessians are expected. Ghadimi & Lan (2013b) con-
sidered non-convex objective functions under the zeroth-order optimization setting.

Bandit convex optimization In the literature of bandit convex optimization, the objective func-
tion sequence is subject to constant dynamic changes and only one or two evaluations for each
function in the sequence is possible. The idea of using noisy function values subject to ran-
dom perturbations to estimate function gradients first appeared in the seminal work of (Yudin &
Nemirovskii, 1983) and was applied to bandit convex optimization problems in Flaxman et al.
(2005). Agarwal et al. (2010) obtained improved convergence rates with additional strongly
smooth/convex assumptions. Duchi et al. (2015); Shamir (2013, 2017) considered convex opti-
mization/bandit problems with noiseless zeroth-order oracles and derived nearly matching con-
vergence rates. Nesterov & Spokoiny (2017) studied the convergence rate under noisy zeroth-
order oracles. Also, Hazan & Levy (2014) used an elliptical probing distribution to study the
constrained zeroth-order optimization problem with optimal solution x˚ very close to the bound-
ary of feasible sets. Bubeck et al. (2017) proposed kernel based methods that attain optimal
regret bounds for bandit convex optimization without strong convexity or smoothness assump-
tions. While most works consider stationary regret only, results on dynamic regret for bandit
convex optimization also exist (Besbes et al., 2015).

Global or simulation optimization Traditionally, global optimization aims at finding the global
optima of a multi-modal function, typically at the cost of an exponential number of queries/samples
in domain dimensions. The question has a long history in the optimization research community
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(Kan & Timmer, 1987a,b) and has also received a significant amount of recent interest in statis-
tics and machine learning (Bubeck et al., 2011; Bull, 2011; Hazan et al., 2017; Malherbe et al.,
2016; Malherbe & Vayatis, 2017; Rasmussen & Williams, 2006). Many previous works (Bubeck
et al., 2011; Kleinberg, 2005) have derived rates for non-convex smooth payoffs in “continuum-
armed” bandit problems. Grill et al. (2015); Minsker (2013) studies the problem of estimating
the set of all optima of a smooth function in Hausdorff’s distance. For Hölder smooth func-
tions with polynomial growth, Minsker (2013) derives an n´1{p2α`d´αβq minimax rate for α ă 1
(later improved to α ě 1 in his thesis Minsker (2012)), Grill et al. (2015); Minsker (2013) also
discussed adaptivity to unknown smoothness parameters. (Malherbe et al., 2016; Malherbe &
Vayatis, 2017) impose additional assumptions on the level sets of the underlying function to
obtain an improved convergence rate.

Methodology-wise, the success elimination algorithm in Sec. 3.1 is conceptually similar
to the abstract Pure Adaptive Search (PAS) framework proposed and analyzed in (Zabinsky &
Smith, 1992). The iterative procedure also resembles disagreement-based active learning meth-
ods (Balcan et al., 2009; Dasgupta et al., 2008; Hanneke, 2007) and the “successive rejection”
algorithm in bandit problems (Even-Dar et al., 2006). The intermediate steps of candidate point
elimination can also be viewed as sequences of level set estimation problems (Polonik, 1995;
Rigollet & Vert, 2009; Singh et al., 2009) or cluster tree estimation (Balakrishnan et al., 2013;
Chaudhuri et al., 2014) with active queries.

Bandit convex optimization In the literature of bandit convex optimization, the objective func-
tion sequence is subject to constant dynamic changes and only one or two evaluations for each
function in the sequence is possible. The idea of using noisy function values subject to ran-
dom perturbations to estimate function gradients first appeared in the seminal work of (Yudin &
Nemirovskii, 1983) and was applied to bandit convex optimization problems in Flaxman et al.
(2005). Agarwal et al. (2010) obtained improved convergence rates with additional strongly
smooth/convex assumptions. Duchi et al. (2015); Shamir (2013, 2017) considered convex opti-
mization/bandit problems with noiseless zeroth-order oracles and derived nearly matching con-
vergence rates. Nesterov & Spokoiny (2017) studied the convergence rate under noisy zeroth-
order oracles. Also, Hazan & Levy (2014) used an elliptical probing distribution to study the
constrained zeroth-order optimization problem with optimal solution x˚ very close to the bound-
ary of feasible sets. Bubeck et al. (2017) proposed kernel based methods that attain optimal
regret bounds for bandit convex optimization without strong convexity or smoothness assump-
tions. While most works consider stationary regret only, results on dynamic regret for bandit
convex optimization also exist (Besbes et al., 2015).

Online convex optimization In online convex optimization, an arbitrary convex function se-
quence f1, ¨ ¨ ¨ , fT is allowed, and the regret of a policy π is compared against the optimal station-
ary benchmark infxPX t

řT
t“1 ftpxqu in hindsight. Unlike the bandit convex optimization setting,

in online convex optimization the full information of ft is revealed to the optimizing algorithm
after epoch t, which allows for exact gradient methods. It is known that for unconstrained online
convex optimization, the simplest gradient descent method attainsOp

?
T q regret for convex func-

tions, and Oplog T q regret for strongly convex and smooth functions, both of which are optimal
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in the worst-case sense (Hazan, 2016). For constrained optimization problems, projection-free
methods exist following mirror descent or follow-the-regularized-leader (FTRL) methods (Hazan
& Levy, 2014). Hall & Willett (2015); Zinkevich (2003) considered the question of online con-
vex optimization by competing against the optimal dynamic solution sequence x˚1 , ¨ ¨ ¨ , x

˚
T sub-

ject to certain smoothness constraints like
ř

t }x
˚
t`1´x

˚
t } ď C. Jadbabaie et al. (2015); Mokhtari

et al. (2016) further imposed the constraint on both solution sequences and function sequences
in terms of L8,1-variation and showed that adaptivity to the unknown smoothness parameter VT
is possible with noiseless gradient and the information of }ft ´ ft´1}8. Daniely et al. (2015);
Zhang et al. (2018) also designed algorithms that adapt to the unknown smoothness parameter,
under the model that the entire function ft is revealed after time t. However, the adaptation
still remains an open problem in the “bandit” feedback setting considered in our paper, in which
only noisy evaluations of ftpxtq or ∇ftpxtq are revealed. Under the bandit feedback setting, the
function perturbations (e.g., }ft`1´ ft}8) cannot be easily estimated, making it unclear whether
adaptation to VT is possible.

3.5 Proofs of results in Sec. 3.1

3.5.1 Proof of Lemma 12
We will need the following standard concentration inequality for Gaussian random vectors:
Lemma 24 ((Hsu et al., 2012)). Suppose x „ Ndp0, Idˆdq and let A be a d ˆ d positive semi-
definite matrix. Then for all t ą 0,

Pr
”

xJAx ą trpAq ` 2
a

trpA2qt` 2}A}opt
ı

ď e´t.

Our proof closely follows the analysis of asymptotic convergence rates for series estimators in
the seminal work of Newey (1997). We further work out all constants in the error bounds to arrive
at a completely finite-sample result, which is then used to construct finite-sample confidence
intervals.

We start with as polynomial interpolation results for all Hölder smooth functions inB8htpx;X q.
Lemma 25. Suppose f satisfies Eq. (3.6) on B8h px;X q. Then there exists rfx P Pk such that

sup
zPB8h px;X q

ˇ

ˇfpzq ´ rfxpzq
ˇ

ˇ ďMdkhα. (3.42)

Proof. Consider

rfxpzq :“ fpxq `
k
ÿ

j“1

ÿ

α1`...`αd“j

Bjfpxq

Bxα1
1 . . . Bxαdd

d
ź

`“1

pz` ´ x`q
α` . (3.43)

By Taylor expansion with Lagrangian remainders, there exists ξ P p0, 1q such that

ˇ

ˇ rfxpzq ´ fpzq
ˇ

ˇ ď
ÿ

α1`...`αd“k

ˇ

ˇf pαqpx` ξpz ´ xqq ´ f pαqpxq
ˇ

ˇ ¨

d
ź

`“1

|z` ´ x`|
α` . (3.44)
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Because f satisfies Eq. (3.6) on B8h px;X q, we have that |f pαqpx ` ξpz ´ xqq ´ f pαqpxq| ď
M ¨ }z ´ x}α´k8 . Also note that |z` ´ x`| ď }z ´ x}8 ď h for all z P B8h px;X q. The lemma is
thus proved.

Using Eq. (3.9), the local polynomial estimate pfh can be written as pfhpzq ” ψx,hpzq
J
pθh,

where
pθh “ pΨ

J
t,hΨt,hq

´1ΨJ
t,hYt,h. (3.45)

In addition, because rfx P Pk, there exists rθ P RD such that rfxpzq ” ψx,hpzq
J
rθ. Denote

also that Ft,h :“ pfpxt1qq1ďt1ďt,xt1PB8h pxq, ∆t,h :“ pfpxt1q ´ rfxpxt1qq1ďt1ďt,xt1PB8h pxq and Wt,h :“
pwt1q1ďt1ďt,xt1PB8h pxq. Eq. (3.45) can then be re-formulated as

pθh “ pΨ
J
t,hΨt,hq

´1ΨJ
t,h

”

Ψt,h
rθ `∆t,h `Wt,h

ı

(3.46)

“ rθ `

„

1

m
ΨJ
t,hΨt,h

´1 „
1

m
ΨJ
t,hp∆t,h `Wt,hq



. (3.47)

Because 1
m

ΨJ
t,hΨt,h ľ σIDˆD and supzPB8h pxq }ψx,hpzq}2 ď b, we have that

}pθh ´ rθ}2 ď
b

σ
}∆t,h}8 `

›

›

›

›

›

„

1

m
ΨJ
t,hΨt,h

´1
1

m
ΨJ
t,hWt

›

›

›

›

›

2

. (3.48)

Invoking Lemma 25 we have }∆t,h}8 ď Mdkhα. In addition, because Wt „ Nmp0, Imˆnq,
we have that

„

1

m
ΨJ
t,hΨt,h

´1
1

m
ΨJ
t,hWt „ ND

˜

0,
1

m

„

1

m
ΨJ
t,hΨt,h

´1
¸

. (3.49)

Applying concentration inequalities for quadratic forms of Gaussian random vectors (Lemma
90), with probability 1´ δ it holds that

›

›

›

›

›

„

1

m
ΨJ
t,hΨt,h

´1
1

m
ΨJ
t,hWt

›

›

›

›

›

2

ď

c

5D logp1{δq

σm
. (3.50)

We then have that with probability 1´ δ that

}pθh ´ rθ}2 ď
b

σh
Mdkhαt `

c

5D logp1{δq

σm
. (3.51)

Finally, noting that

| pfhpxq ´ fpxq| “ | pfhpxq ´ rfxpxq| “ |ψpxq
J
ppθh ´ rθq| ď b}pθh ´ rθ}2 (3.52)

we complete the proof of Lemma 12.
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3.5.2 Proof of Proposition 6
To prove Proposition 6, we need the following lemma showing that the grid Gn is “dense” in ap-
proximating the target function f under assumptions (B1) and (B2). Define x˚n :“ arg minxPGn fpxq,
f˚n “ fpx˚nq and f˚ “ infxPX fpxq.
Lemma 26. Suppose (B1) and (B2) hold. Then with probability 1´Opn´1q the following holds:

1. supxPX minx1PGn }x´ x
1}8 “ rOpn´3{minpα,1qq;

2. f˚n ´ f
˚ “ rOpn´3q.

Proof. LetHN Ď X be the finite subset ofX such that |HN | “ N and supxPX minx1PHn }x´x
1}8

is maximized. By standard results of metric entropy number of the d-dimensional unit box (see
for example, (van de Geer, 2000, Lemma 2.2)), we have that supxPX minx1PHn }x´x

1}8 À N´1{d.
For any x P Hn, consider an `8 ball B8rnpxq or radius rn centered at x, with rn to be specified

later. Because the density of PX is uniformly bounded away from below on X , we have that
PXpx P B

8
rnpxqq Á rdn. Therefore, applying union bound over all x P Hn we have that

PX
“

Dx P HN , Gn XB
8
rnpxq “ H

‰

ď Np1´ rdnq
|Gn| À exp

 

´rdn|Gn| ` logN
(

. (3.53)

Set N “ |Gn| and rn — n´3{minpα,1q log n. The right-hand side of the above inequality is then
upper bounded by Op1{n2q, thanks to the assumption (A1) and that |Gn| Á n3d{minpα,1q. The first
property is then proved by noting that

sup
xPX

min
x1PGn

}x´ x1}8 ď sup
xPX

min
x1PHn

}x´ x1}8 `max
xPHn

min
x1PGn

}x´ x1}8. (3.54)

To prove the second property, note that for any x, x1 P X , |fpxq´fpx1q| ďM ¨}x´x1}
minpα,1q
8 .

The first property then implies that f˚n ´ f
˚ “ rOpn´3q.

We are now ready to prove Proposition 6. By Chernoff bound and union bound, with
probability 1 ´ Opn´1q uniformly over all x P Gn, there are Ωp

?
n0 log2 nq uniform samples

in B8h0px;X q. Subsequently, by standard Gaussian concentration inequality, with probability
1´Opn´1q we have

inf
zPB8h0

px;X q
fpzq ´Opn

´1{4
0 q ď qfpxq ď sup

zPB8h0
px;X q

fpzq `Opn
´1{4
0 q @x P Gn. (3.55)

Fix arbitrary rx˚ P arg minxPGn fpxq. Because f P Σα
κpMq for constant κ and h0 Ñ 0, f

is smooth on B8h0prx
˚;X q and therefore supzPB8h0 prx

˚;X q fpzq ď fprx˚q ` Oph
mintα,1u
0 q ď fprx˚q `

Op1{ log2 nq ď f˚ ` Op1{ log2 nq, where the last inequality holds due to Lemma 26. On the
other hand, for all x P Gn, qfpxq ě f˚ ´ Opn

´1{4
0 q. Therefore, for sufficiently large n we must

have qfprx˚q ď minzPGn qfpzq ` 1{ log n and subsequently rx˚ P S 10.
We next prove the statement that S 10 Ď

Ť

xPLf pκ{2q
B8h0px;X q. Consider arbitrary z P Gn and

z R
Ť

xPLf pκ{2q
B8h0px;X q. By definition, fpz1q ě f˚ ` κ{2 for all z1 P B8h0pz;X q. Subsequently,

qfpzq ě f˚ ` κ{2´Opn
´1{4
0 q ą f˚ ` 1{ log n for constant κ ą 0 and sufficiently large n, which

implies z R S 10.
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3.5.3 Proof of Theorem 4
We prove the theorem by considering every reference function f0 P Σα

κpMq X ΘC separately.
For simplicity, we assume κ “ 8 throughout the proof. The 0 ă κ ă 8 can be handled by
replacing X with S0 which is the grid after the pre-screening step described in Section 3.1.3. We
also suppress dependency on d, α,M,C, p

0
, p0 in Op¨q, Ωp¨q, Θp¨q, Á, À and — notations. We

further suppress logarithmic terms of n in rOp¨q and rΩp¨q notations.
The following lemma is our main lemma, which shows that the active set Sτ in our proposed

algorithm shrinks geometrically before it reaches a certain level. To simplify notations, denote
rc0 :“ 10c0 and (A2) then hold for all ε, δ P r0,rc0s for all f0 P ΘC .
Lemma 27. For τ “ 1, . . . , T define ετ :“ maxtrc0 ¨ 2´τ , C3rε

U
npf0q ` n´1{2s log2 nu, where

C3 ą 0 is a constant depending only on d, α,M, p
0
, p0 and C. Then for sufficiently large n, with

probability 1´Opn´1q the following holds uniformly for all outer iterations τ “ 1, . . . , T :

Sτ Ď Lf pετ q. (3.56)

Lemma 27 shows that the level ετ in Lf pετ q that contains Sτ´1 shrinks geometriclly, until
the condition ετ ě C3rε

U
npf0q ` n´1{2s log2 n is violated. If the condition is never violated,

then at the end of the last epoch τ˚ we have ετ˚ “ Opn´1q because τ˚ “ log n, in which
case Theorem 4 clearly holds. On the other hand, because Sτ Ď Sτ´1 always holds, we have
ετ˚ À rε

U
npf0q ` n

´1{2s log2 n which justifies the convergence rate in Theorem 4.
In the rest of this section we prove Lemma 27. We need several technical lemmas and propo-

sitions. Except for Proposition 11 that is straightforward, the proofs of the other technical lemmas
are deferred to the end of this section.

The next proposition shows that with high probability, the confidence intervals constructed
in the algorithm are truthful and the successive rejection procedure will never exclude the true
optimizer of f on Gn.
Proposition 11. Suppose δ “ 1{n4|Gn|. Then with probability 1´Opn´1q the following holds:

1. fpxq P r`tpxq, utpxqs for all 1 ď t ď n and x P Gn;
2. x˚n P Sτ for all 0 ď τ ď n.

Proof. The first property is true by applying the union bound over all t “ 1, . . . , n and x P Gn.
The second property then follows, because `tpx˚nq ď f˚n and minxPSτ´1 utpxq ě f˚n for all τ .

The following lemma shows that every small box centered around a certain sample point
x P Gn contains a sufficient number of sample points whose least eigenvalue can be bounded
with high probability under the polynomial mapping ψx,h.
Lemma 28. For any x P Gn, 1 ď m ď n and h ą 0, letK1

h,mpxq, . . . , K
n
h,mpxq be n independent

point sets, where each point set consists of m points sampled i.i.d. uniformly at random from
B8h px;Gnq “ Gn XB

8
h pxq. With probability 1´Opn´1q the following holds true uniformly for

all x P Gn, h P tj{n2 : j P N, j ď n2u and K`
h,mpxq, ` P rns as nÑ 8:

1. suphą0 supzPB8h pxq }ψx,hpzq}2 — Θp1q;
2. |B8h px;Gnq| — hd|Gn|;
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3. σminpK
`
h,mpxqq — Θp1q for all m ě Ωplog2 nq and m ď |Gn|, where σminpK

`
h,mpxqq is the

least eigenvalue of 1
m

ř

zPK`
h,mpxq

ψx,hpzqψx,hpzq
J.

Remark 24. It is possible to improve the concentration result in Eq. (3.73) using the strategies
adopted in (Chaudhuri et al., 2014) based on sharper Bernstein type concentration inequalities.
Such improvements are, however, not important in establishing the main results of this paper.

The next lemma shows that, the bandwidth ht selected at the end of each outer iteration τ
is near-optimal, being sandwiched between two quantities determined by the size of the active
sample grid rSτ´1 :“ S˝τ´1p%τ´1q.
Lemma 29. There exist constants C1, C2 ą 0 depending only on d, α,M, p

0
, p0 and C such that

with probability 1´Opn´1q, the following holds for every outer iteration τ P t1, . . . , T u and all
x P Sτ´1:

C1rrντ´1n0s
´1{p2α`dq

´ τ{n ď %τ pxq ď htpxq ď C2rrντ´1n0s
´1{p2α`dq log n` τ{n, (3.57)

where rντ´1 :“ |Gn|{|rSτ´1|.
We are now ready to state the proof of Lemma 27, which is based on an inductive argument

over the epochts τ “ 1, . . . , T .

Proof. We use induction to prove this lemma. For the base case τ “ 1, because }f ´ f0}8 ď

εUnpf0q and εUnpf0q Ñ 0 as n Ñ 8, it suffices to prove that S1 Ď Lf0prc0{4q for sufficiently
large n. Because rS0 “ S0 “ Gn, invoking Lemmas 29 and 12 we have that |utpxq ´ `tpxq| “
rOpn´α{p2α`dqq for all x P Gn with high probability at the end of the first outer iteration τ “ 1.
Therefore, for sufficiently large n we conclude that supxPGn |utpxq ´ `tpxq| ď c0{8 and hence
S1 Ď Lf0prc0{4q.

We now prove the lemma for τ ě 2, assuming it holds for τ ´ 1. We also assume that n (and
hence n0) is sufficiently large, such that the maximum CI length maxxPG |utpxq´ `tpxq| after the
first outer iteration τ “ 1 is smaller than c0, where c0 is a constant such that

Because }f ´ f0}8 ď εUnpf0q and ετ´1 ě C3ε
U
npf0q log2 n, for appropriately chosen constant

C3 that is not too small, we have that }f ´ f0}8 ď ετ´1. By the inductive hypothesis we have

Sτ´1 Ď Lf pετ´1q Ď Lf0pετ´1 ` }f ´ f0}8q Ď Lf0p2ετ´1q. (3.58)

Subsequently, denoting ρ˚τ´1 :“ maxxPSτ´1 %τ´1pxq we have

rSτ´1 “ S˝τ´1 Ď L˝f0p2ετ´1, ρ
˚
τ´1q. (3.59)

Let
Ť

xPHn
B2
ρ˚τ´1

pxq be the smallest covering set of Lf0p2ετ´1q, meaning that Lf0p2ετ´1q Ď
Ť

xPHn
B2
ρ˚τ´1

pxq, where B2
ρ˚τ´1

pxq “ tz P X : }z ´ x}2 ď ρ˚τ´1u is the `2 ball of radius ρ˚τ´1

centered at x. By (A2), we know that |Hn| À 1 ` rρ˚τ´1s
´dµf0p2ετ´1q. In addition, the enlarged

level set satisfies L˝f0p2ετ´1, ρ
˚
τ´1q Ď

Ť

xPHn
B8

2ρ˚τ´1
pxq. Subsequently,

µ˝f0p2ετ´1, ρ
˚
τ´1q À |Hn| ¨ rρ

˚
τ´1s

d
À µf0p2ετ´1q ` rρ

˚
τ´1s

d. (3.60)
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By Lemma 29, the monotonicity of |rSτ´1| and the fact that p
0
ď pXpzq ď p0 for all z P X , we

have

ρ˚τ´1 À rµ
˝
f pετ´1, ρ

˚
τ´1qs

1{p2α`dqn
´1{p2α`dq
0 log n (3.61)

ď rµ˝f0p2ετ´1, ρ
˚
τ´1qs

1{p2α`dqn
´1{p2α`dq
0 log n (3.62)

À
`

µf0p2ετ´1q ` rρ
˚
τ´1s

d
˘1{p2α`dq

n
´1{p2α`dq
0 log n. (3.63)

Re-arranging terms on both sides of Eq. (3.63) we have

ρ˚τ´1 À max

"

rµf0p2ετ´1qs
1

2α`dn
´ 1

2α`d

0 log n, n
´ 1

2α
0 log n

*

. (3.64)

On the other hand, according to the selection procedure of the bandwidth htpxq, we have that
ηhtpxq,δpxq À bhtpxq,δpxq. Invoking Lemma 29 we have for all x P Sτ´1 that

ηhtpxq,δpxq À bhtpxq,δpxq À rhtpxqs
α (3.65)

À rrντ´1n0s
´α{p2α`dq log n (3.66)

À rrντ´2n0s
´α{p2α`dq log n (3.67)

À rρ˚τ´1s
α log n. (3.68)

Here Eq. (3.66) holds by invoking the upper bound on htpxq in Lemma 29, Eq. (3.67) holds
because rντ´1 ě rντ´2, and Eq. (3.68) holds by again invoking the lower bound on %τ´1pxq in
Lemma 29. Combining Eqs. (3.64,3.68) we have

max
xPSτ´1

ηhtpxq,δpxq À max
!

rµf0p2ετ´1qs
α

2α`dn
´ α

2α`d

0 log2 n, n
´ 1

2
0 log n

)

. (3.69)

Recall that n0 “ n{ log n and εUnpf0q ď ετ´1, provided that C3 is not too small. By definition,
every ε ě εUnpf0q satisfies ε´p2`d{αqµf0pεq ď n{ logω n for some large constant ω ą 5 ` d{α.
Subsequently,

rµf0p2ετ´1qs
α

2α`dn
´ α

2α`d

0 log2
À 2ετ´1n

α
2α`d log´

ωα
2α`d n ¨ n

´ α
2α`d

0 log2 n (3.70)

À ετ´1{rlog ns
pω´5´d{αqα

2α`d . (3.71)

Because ω ą 5`d{α, the right-hand side of Eq. (3.71) is asymptotically dominated 5 by ετ´1. In
addition, n´1{2

0 log n is also asymptotically dominated by ετ´1 because ετ´1 ě C3n
´1{2 logω n.

Therefore, for sufficiently large n we have

max
xPSτ´1

ηhtpxq,δpxq ď ετ´1{4. (3.72)

Lemma 27 is thus proved.
5We say tanu is asymptotically dominated by tbnu if limnÑ8 |an|{|bn| “ 0.
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Proof of Lemma 28 We first show that the first property holds almost surely. Recall the
definition of ψx,h, we have that 1 ď }ψx,hpzq}2 ď D ¨ rmax1ďjďd h

´1|zj ´ xj|s
k. Because

}z ´ x}8 ď h for all z P B8h pxq, supzPB8h pxq }ψx,hpzq}2 À Op1q for all h ą 0. Thus,
suphą0 supzPB8h pxq }ψx,hpzq}2 — Θp1q for all x P Gn.

For the second property, by Hoeffding’s inequality (Lemma 89) and the union bound, with
probability 1´Opn´1q we have that

max
x,h

ˇ

ˇ

ˇ

ˇ

|B8h px;Gnq|

|Gn|
´ PXpz P B

8
h pxqq

ˇ

ˇ

ˇ

ˇ

À

d

log n

|Gn|
. (3.73)

In addition, note that PXpz P B8h px;X qq ě p
0
λpB8h px;X qq Á hd and PXpz P B8h px;X qq ď

p0λpB
8
h px;X qq À hd, where λp¨q denotes the Lebesgue measure onX . Subsequently, |B8h px;Gnq|

is lower bounded by Ωphd|Gn|´
a

|Gn| log nq and upper bounded by Ophd|Gn|`
a

|Gn| log nq.
The second property is then proved by noting that hd Á n´d and |Gn| Á n3d{minpα,1q.

We next prove the third property. Because p
0
ď pXpzq P p0 for all z P X , we have that

p
0

ż

B8h px;X q
ψx,hpzqψx,hpzq

JdUx,hpzq ĺ E

»

–

1

m

ÿ

zPK`
h,m

ψx,hpzqψx,hpzq
J

fi

fl (3.74)

ĺ p0

ż

B8h px;X q
ψx,hpzqψx,hpzq

JdUx,hpzq, (3.75)

where Ux,h is the uniform distribution on B8h px;X q. Note also that
ż

X
ψ0,1pzqψ0,1pzq

JdUpzq ĺ

ż

B8h px;X q
ψx,hpzqψx,hpzq

JdUx,hpzq (3.76)

ĺ 2d
ż

X
ψ0,1pzqψ0,1pzq

JdUpzq (3.77)

where U is the uniform distribution on X “ r0, 1sd. The following proposition upper and lower
bounds the eigenvalues of

ş

X ψ0,1pzqψ0,1pzq
JdUpzq, which is proved in the appendix.

Proposition 12. There exist constants 0 ă ψ0 ď Ψ0 ă 8 depending only on d,D such that

ψ0IDˆD ĺ

ż

X
ψ0,1pzqψ0,1pzq

JdUpzq ĺ Ψ0IDˆD. (3.78)

Using Proposition 12 and Eqs. (3.76,3.77), we conclude that

Ωp1q ¨ IDˆD ĺ E

»

–

1

m

ÿ

zPK`
h,m

ψx,hpzqψx,hpzq
J

fi

fl ĺ Op1q ¨ IDˆD. (3.79)

Applying matrix Chernoff bound (Lemma 98) and the union bound, we have that with probability
1´Opn´1q,

max
x,h,m,`

›

›

›

›

›

›

1

m

ÿ

zPK`
h,mpxq

ψx,hpzqψx,hpzq
J
´ E

“

ψx,hpzqψx,hpzq
J
|z P Bhpxq

‰

›

›

›

›

›

›

op

À

c

log n

m
. (3.80)
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Combining Eqs. (3.79,3.80) and applying Weyl’s inequality (Lemma 99) we have

Ωp1q ´Op
a

log n{mq À σminpK
`
h,mpxqq À Op1q ´Op

a

log n{mq. (3.81)

The third property is therefore proved.

Proof of Lemma 29 We use induction to prove this lemma. For the base case of τ “ 1, we
have rS0 “ S0 “ Gn and therefore rντ´1 “ 1. Furthermore, applying Lemma 28 we have that for
all h “ j{n2,

bh,δpxq — hα and sh,δpxq —

c

log n

hdn0

. (3.82)

Thus, for h selected according to Eq. (3.11) as the largest bandwidth of the form j{n2, j P N such
that bh,δpxq ď sh,δpxq, both bh,δpxq, sh,δpxq are on the order of n´1{p2α`dq

0 up to logarithmic terms
of n, and therefore one can pick appropriate constants C1, C2 ą 0 such that C1n

´1{p2α`dq
0 ď

%1pxq ď C2n
´1{p2α`dq
0 log n holds for all x P Gn.

We next prove the lemma for τ ą 1, assuming it holds for τ ´ 1. We first establish
the lower bound part. Define ρ˚τ´1 :“ minzPSτ´1 %τ´1pzq. By inductive hypothesis, ρ˚τ´1 ě

C1rrντ´2n0s
´1{p2α`dq´pτ ´1q{n. Note also that rντ´1 ě rντ´2 because rSτ´1 Ď rSτ´2, which holds

because Sτ´1 Ď Sτ´2 and %τ´1pzq ď %τ´2pzq for all z. Let h˚t be the smallest number of the
form j˚t {n

2, j˚t P rn
2s such that h˚t ě C1rrντ´1n0s

´1{p2α`dq ´ τ{n. We then have h˚t ď ρ˚τ´1

and therefore query points in epoch τ are uniformly distributed in B8
h˚t
px;Gnq. Subsequently,

applying Lemma 28 we have with probability 1´Opn´1q that

bh˚t ,δpxq ď C 1rh˚t s
α and sh˚t ,δpxq ě C2

d

log n

rh˚t s
d
rντ´1n

, (3.83)

where C 1, C2 ą 0 are constants that depend on d, α,M, p
0
, p0 and C, but not C1, C2, τ or h˚t . By

choosing C1 appropriately (depending on C 1 and C2) we can make bh˚t ,δpxq ď sh˚t ,δpxq holds for
all x P Sτ´1, thus establishing %τ pxq ě mint%τ´1pxq, h

˚
t u ě C1rrντ´1n0s

´1{p2α`dq ´ τ{n.
We next prove the upper bound part. For any ht “ jt{n

2 where jt P rn2s, invoking Lemma
28 we have that

bh,δpxq ě rC 1hα and sh,δpxq ď rC2

d

log n

minth, ρ˚τ´1u
d ¨ rντ´1n0

, (3.84)

where rC 1 and rC2 are again constants depending on d, α,M, p
0
, p0 and C, but not C1, C2. Note

also that ρ˚τ´1 ě C1rrντ´2n0s
´1{p2α`dq ´ pτ ´ 1q{n ě C1rrντ´1n0s

´1{p2α`dq ´ τ{n, because
rντ´1 ě rντ´2. By selecting constant C2 ą 0 carefully (depending on rC 1, rC2 and C1), we can
ensure bh,δpxq ą sh,δpxq for all h ě C2rrντ´1n0s

´1{p2α`dq ` τ{n. Therefore, %τ pxq ď htpxq ď
C2rrντ´1n0s

´1{p2α`dq ` τ{n.
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3.5.4 Proof of Theorem 5
In this section we prove the main negative result in Theorem 5. To simplify presentation, we
suppress dependency on α, d, c0 and C0 inÀ,Á,—, Op¨q and Ωp¨q notations. However, we do not
suppress dependency on CR or M in any of the above notations.

Let ϕ0 : r´2, 2sd Ñ R˚ be a non-negative function defined on X such that ϕ0 P Σ
rαs
κ p1q with

κ “ 8, supxPX ϕ0pxq “ Ωp1q and ϕ0pzq “ 0 for all }z}2 ě 1. Here rαs denotes the smallest
integer that upper bounds α. Such functions exist and are the cornerstones of the construction
of information-theoretic lower bounds in nonparametric estimation problems (Castro & Nowak,
2008). One typical example is the “smoothstep” function (see for example (Ebert, 2003))

SNpxq :“
1

Z
xN`1

N
ÿ

n“0

ˆ

N ` n

n

˙ˆ

2N ` 1

N ´ n

˙

p´xqn, N “ 0, 1, 2, . . .

where Z ą 0 is a scaling parameter. The smoothstep function SN is defined on r0, 1s and
satisfies the Hölder condition in Eq. (3.6) of order α “ N on r0, 1s. It can be easily extended
to rSN,d : r´2, 2sd Ñ R by considering rSN,dpxq :“ 1{Z ´ SNpa}x}1q where }x}1 “ |x1| `

. . . ` |xd| and a “ 1{p2dq. It is easy to verify that, with Z chosen appropriately, rSN,d P ΣN
8p1q,

supxPX rSN,dpxq “ 1{Z “ Ωp1q and rSN,dpzq “ 0 for all }z}2 ě 1, where M ą 0 is a constant.
For any x P X and h ą 0, define ϕx,h : X Ñ R˚ as

ϕx,hpzq :“ Irz P B8h pxqs ¨
Mhα

2
ϕ0

´z ´ x

h

¯

. (3.85)

It is easy to verify that ϕx,h P Σα
8pM{2q, and furthermore supzPX ϕx,hpzq —Mhα and ϕx,hpzq “

0 for all z R B8h pxq.
Let Lf0pε

L
npf0qq be the level set of f0 at εLnpf0q. Let Hn Ď Lf0pε

L
npf0qq be the largest packing

set such that B8h pxq are disjoint for all x P Hn, and
Ť

xPHn
B8h pxq Ď Lf0pε

L
npf0qq. By (A2’) and

the definition of εLnpf0q, we have that

|Hn| ěMpLf0pε
L
npf0qq, 2

?
dhq Á µf0pε

L
npf0qq ¨ h

´d
ě rεLnpf0qs

2`d{α
¨ nh´d. (3.86)

For any x P Hn, construct fx : X Ñ R as

fxpzq :“ f0pzq ´ ϕx,hpzq. (3.87)

Let Fn :“ tfx : x P Hnu be the class of functions indexed by x P Hn. Let also h —

pεLnpf0q{Mq
1{α such that }ϕx,h}8 “ 2εLnpf0q. We then have that }fx ´ f0}8 ď 2εLnpf0q and

fx P Σα
8pMq, because f0, ϕx,h P Σα

8pM{2q.
The next lemma shows that, with n adaptive queries to the noisy zeroth-order oracle yt “

fpxtq ` wt, it is information theoretically not possible to identify a certain fx in Fn with high
probability.
Lemma 30. Suppose |Fn| ě 2. Let An “ pχ1, . . . , χn, φnq be an active optimization algorithm
operating with a sample budget n, which consists of samplers χ` : tpxi, yiqu

`´1
i“1 ÞÑ x` and an

estimator φn : tpxi, yiqu
n
i“1 ÞÑ

pfx P Fn, both can be deterministic or randomized functions. Then

inf
An

sup
fxPFn

Pr
fx

”

pfx ‰ fx

ı

ě
1

2
´

d

n ¨ supfxPFn }fx ´ f0}
2
8

2|Fn|
. (3.88)
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Lemma 31. There exists constant M ą 0 depending on α, d, c0, C0 such that the right-hand side
of Eq. (3.88) is lower bounded by 1{3.

Lemmas 30 and 31 are proved at the end of this section. Combining both lemmas and noting
that for any distinct fx, fx1 P Fn and z P X , maxtLpz; fxq,Lpz; fx1qu ě εLnpf0q, we proved the
minimax lower bound formulated in Theorem 5.

Proof of Lemma 30 Our proof is inspired by the negative result of multi-arm bandit pure
exploration problems established in (Bubeck et al., 2009). For any x P Hn, define

nx :“ Ef0

«

n
ÿ

i“1

Irx P B8h pxqs

ff

. (3.89)

Because B8h pxq are disjoint for x P Hn, we have
ř

xPHn
nx ď n. Also define, for every x P Hn,

℘x :“ Pr
f0

”

pfx “ fx

ı

. (3.90)

Because
ř

xPHn
℘x “ 1, by pigeonhole principle there is at most one x P Hn such that ℘x ą 1{2.

Let x1, x2 P Hn be the points that have the largest and second largest nx. Then there exists
x P tx1, x2u such that ℘x ď 1{2 and nx ď 2n{|Fn|. By Le Cam’s and Pinsker’s inequality (see,
for example, (Tsybakov, 2009)) we have that

Pr
fx

”

pfx “ fx

ı

ď Pr
f0

”

pfx “ fx

ı

` dTVpP
An
f0
}PAn

fx
q (3.91)

ď Pr
f0

”

pfx “ fx

ı

`

c

1

2
KLpPAn

f0
}PAn

fx
q (3.92)

“ ℘x `

c

1

2
KLpPAn

f0
}PAn

fx
q (3.93)

ď
1

2
`

c

1

2
KLpPAn

f0
}PAn

fx
q. (3.94)

It remains to upper bound KL divergence of the active queries made by An. Using the
standard lower bound analysis for active learning algorithms (Castro, 2014; Castro & Nowak,
2008) and the fact that fx ” f0 on X zB8h pxq, we have

KLpPAn
f0
}PAn

fx
q “ Ef0,An

„

log
Pf0,Anpx1:n, y1:nq

Pfx,Anpx1:n, y1:nq



(3.95)

“ Ef0,An
„

log

śn
i“1 Pf0pyi|xiqPAnpxi|x1:pi´1q, y1:pi´1qq

śn
i“1 Pfxpyi|xiqPAnpxi|x1:pi´1q, y1:pi´1qq



(3.96)

“ Ef0,An
„

log

śn
i“1 Pf0pyi|xiq

śn
i“1 Pfxpyi|xiq



(3.97)

“ Ef0,An

»

–

ÿ

xiPBhpxq

log
Pf0pyi|xiq

Pfxpyi|xiq

fi

fl (3.98)
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ď nx ¨ sup
zPB8h px;X q

KLpPf0p¨|zq}Pfxp¨|zqq (3.99)

ď nx ¨ }f0 ´ fx}
2
8. (3.100)

Therefore,

Pr
fx

”

pfx “ fx

ı

ď
1

2
`

c

1

4
nxε2

n ď
1

2
`

d

n}fx ´ f0}
2
8

2|Fn|
. (3.101)

Proof of Lemma 31 By construction, n supfxPFx }fx ´ f0}
2
8 À M2nh2α and |Fn| “ |Hn| Á

rCεε
L
npf0qs

2`d{αnh´d. Note also that h — pε{Mq1{α — pCεε
L
npf0q{Mq

1{α because }fx ´ f0}8 “

ε “ Cεε
L
npf0q. Subsequently,

n supfxPFx }fx ´ f0}
2
8

2|Fn|
À

nrCεε
L
npf0qs

2

nrCεε
L
npf0qs

2 ¨Md{α
“M´d{α. (3.102)

By choosing the constant M ą 0 to be sufficiently large, the right-hand side of the above
inequality is upper bounded by 1{36. The lemma is thus proved.

3.5.5 Proof of Theorem 6
The proof of Theorem 6 is similar to the proof of Theorem 5, but is much more standard by
invoking the Fano’s inequality (Tsybakov, 2009). In particular, adapting the Fano’s inequality
on any finite function class Fn constructed we have the following lemma:
Lemma 32 (Fano’s inequality). Suppose |Fn| ě 2, and tpxi, yiquni“1 are i.i.d. random variables.
Then

inf
pfx

sup
fxPFn

Pr
fx

”

pfx ‰ fx

ı

ě 1´
log 2` n ¨ supfx,fx1PFn KLpPfx}Pfx1 q

log |Fn|
, (3.103)

where Pfx denotes the distribution of px, yq under the law of fx.
Let Fn be the function class constructed in the previous proof of Theorem 6, corresponding

to the largest packing set Hn of Lf0prε
L
nq such that B8h pxq for all x P Hn are disjoint, where

h — prεLn{Mq
1{α such that }ϕx,h}8 “ 2rεLn for all x P Hn. Because f0 satisfies (A2’), we have

that |Fn| “ |Hn| Á µf0prε
L
nqh

´d. Under the condition that εUnpf0q ď rεLn, it holds that µf0prε
L
nq ě

rrεLns
2`d{αn. Therefore,

|Fn| Á rrεLns2`d{α ¨ nh´d Á rrεLns2 ¨ nMd{α. (3.104)

Because logpn{rεLnq Á log n and M ą 0 is a constant, we have that log |Fn| ě c log n for all
n ě N , where c ą 0 is a constant depending only on α, d and N P N is a constand depending on
M .

Let U be the uniform distribution on X . Because x „ U and fx ” fx1 on X zB8h pxq, we have
that

KLpPfx}Pfx1 q “
1

2

ż

X
|fxpzq ´ fx1pzq|

2dUpzq (3.105)
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ď
1

2
Pr
U
rz P B8h pxqs ¨ }fx ´ fx1}

2
8 (3.106)

ď
1

2
λpB8h pxqq ¨ rε

L
ns

2 (3.107)

À hdrrεLns
2
À rrεLns

2`d{α
{Md{α. (3.108)

By choosing M to be sufficiently large, the right-hand side of Eq. (3.103) can be lower bounded
by an absolute constant. The theorem is then proved following the same argument as in the proof
of Theorem 5.

3.6 Proofs of results in Sec. 3.2

3.6.1 Proof of Lemma 13
We first prove a technical lemma that bounds the `8 norm of error vectors.
Lemma 33. For any x P Rd and zi P t˘1ud, with probability 1´Opd´3q (conditioned on xt and
zi)

›

›

›

›

›

n
ÿ

i“1

εizi

›

›

›

›

›

8

À
σ

δ

c

log d

m
`Hδ.

Proof. Let ξi “ ξi{δ „ N p0, σ2{δ2q. Consider the following decomposition:
›

›

›

›

›

n
ÿ

i“1

εizi

›

›

›

›

›

8

ď
1

mδ

›

›

›

›

›

m
ÿ

i“1

ξizi

›

›

›

›

›

8

` δ ¨ sup
1ďiďm

ˇ

ˇzJi Htpκi, ziqzi
ˇ

ˇ ¨ }zi}8.

The second term on the right-hand side of the above inequality is upper bounded by OpHδq
almost surely, because }zi}8 ď 1 and |zJi Htpκi, ziqzi| ď }Htpκi, ziq}1}zi}

2
8 ď H . For the first

term, because ξi are centered sub-Gaussian random variables independent of zi and }zi}8 ď 1,
we have that 1{m ¨ }

řm
i“1 ξizi}8 À

a

σ2 log d{m with probability 1 ´ Opd´3q, by invoking
standard sub-Gaussian concentration inequalities.

Now define pθ “ ppgt, pµtq, θ0 “ pgt, δ
´1fpxtqq and Z “ pz1, . . . , zmq where zi “ pzi, 1q P

Rd`1. Define also that Y “ pry1, . . . , rymq. The estimator can then be written as pθ “ arg minθPRd`1
1
m
}rY´

Zθ}22 ` λ}θ}1 where rY “ Zθ0 ` ε, ε “ pε1, . . . , εmq. We first establish a “basic inequality” type
results that are essential in performance analysis of Lasso type estimators. By optimality of pθ,
we have that

1

m
}Y ´ Zpθ}22 ` λ}

pθ}1 ď
1

m
}Y ´ Zθ0}

2
2 ` λ}θ0}1 “

1

m
}ε}22 ` λ}θ0}1.

Re-organizing terms we obtain

λ}pθ}1 ď λ}θ0}1 `
2

m
ppθ ´ θ0q

JZ
J
ε.
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On the other hand, by Hölder’s inequality and Lemma 33 we have, with probability 1´Opd´2q,

2

m
ppθ ´ θ0q

JZ
J
ε ď 2}pθ ´ θ0}1 ¨

›

›

›

›

1

m
Z
J
ε

›

›

›

›

8

À }pθ ´ θ0}1 ¨

˜

σ

δ

c

log d

m
`Hδ

¸

.

Subsequently, if λ ď c0pσδ
´1
a

log d{m ` Hδq for some sufficiently small c0 ą 0, we have
that }pθ}1 ď }θ0}1 ` 1{2}pθ ´ θ0}1. Multiplying by 2 and adding }pθ ´ θ0}1 on both sides of the
inequality we obtain }pθ ´ θ0}1 ď 2p}pθ ´ θ0}1 ` }

pθ0}1 ´ }
pθ}1q. Recall that θ0 is sparse and let

S “ S Y td ` 1u be the support of θ0. We then have }ppθ ´ θ0qSc ` }pθ0qSc}1 ´ }
pθSc}1 “ 0 and

hence }ppθ ´ θ0qSc}1 ´ }p
pθ ´ θ0qS}1 ď }

pθ ´ θ0}1 ď 2}ppθ ´ θ0qS}1. Thus,

}ppθ ´ θ0qSc}1 ď 3}ppθ ´ θ0qS}1. (3.109)

Now consider pθ that minimizes 1
m
}Y ´ Zθ}22 ` λ}θ}1. By KKT condition we have that

›

›

›

›

1

m
Z
J
pY ´ Zpθq

›

›

›

›

8

ď
λ

2
.

Define pΣ “ 1
m
Z
J
Z and recall that Y “ Zθ0 ` ε. Invoking Lemma 33 and the scaling of λ we

have that, with probability 1´Opd´2q

}pΣppθ ´ θ0q}8 ď
λ

2
`

›

›

›

›

1

m
Z
J
ε

›

›

›

›

À
σ

δ

c

log d

m
` δH. (3.110)

By definition of tziumi“1, we know that pΣjj “ 1 for all j “ 1, . . . , d ` 1 and ErpΣjks “ 0
for j ‰ k. By Hoeffding’s inequality (Hoeffding, 1963) and union bound we have that with
probability 1 ´ Opd´2q, }pΣ ´ Ipd`1qˆpd`1q}8 À

a

log d{m, where } ¨ }8 denotes the maximum
absolute value of matrix entries. Also note that pθ ´ θ0 satisfies }ppθ ´ θ0qSc}1 ď 3}ppθ ´ θ0qS}1

thanks to Eq. (3.109). Subsequently,

}pθ ´ θ0}8 ď }pΣppθ ´ θ0q}8 ` }ppΣ´ Iqppθ ´ θ0q}8

ď }pΣppθ ´ θ0q}8 ` }pΣ´ I}8}pθ ´ θ0}1

ď }pΣppθ ´ θ0q}8 ` }pΣ´ I}8 ¨ 4}ppθ ´ θ0qS}1

ď }pΣppθ ´ θ0q}8 ` }pΣ´ I}8 ¨ 4ps` 1q}pθ ´ θ0}8

À
σ

δ

c

log d

m
` δH `

c

s2 log d

m
¨ }pθ ´ θ0}8. (3.111)

Combining Eq. (3.111) together with the scaling m “ Ωps2 log dq we complete the proof of
Lemma 13. Note that the statement on the `1 error }pθ´ θ0}1 is a simple consequence of the basic
inequality Eq. (3.109).
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3.6.2 Proof of Lemma 14
Before proving Lemma 14 we state a simple observation on sub-exponentiality of products of
sub-Gaussian random variables.
Lemma 34. Suppose X and Y are centered sub-Gaussian random variables with parameters ν2

1

and ν2
2 , respectively. Then XY is a centered sub-exponential random variable with parameter

ν “
?

2v and α “ 2v, where v “ 2e2{e`1ν1ν2.

Proof. XY is clearly centered because EXY “ EX ¨EY “ 0, thanks to independence. We next
bound Er|XY |ks for k ě 3 (i.e., verification of the Bernstein’s condition). Because X and Y are
independent, we have that Er|XY |ks “ E|X|k ¨E|Y |k. In addition, because X is a centered sub-
Gaussian random variable with parameter ν2

1 , it holds that pE|X|kq1{k ď ν1e
1{e
?
k. Similarly,

pE|X|kq1{k ď ν2e
1{e
?
k. Subsequently,

E|XY |k ď
`

e2{eν1ν2

˘k
¨ kk ď

`

e2{eν1ν2

˘k
¨ ekk! ď

1

2
k! ¨

`

2e2{e`1ν1ν2

˘k
.

where in the second inequality we use the Stirling’s approximation inequality that
?

2πkkke´k ď
k!. The sub-exponential parameter of XY can then be determined.

We use the “full-length” parameterization rθt “ pθt`
1
m
Z
J

t p
rYt´Zt

pθtq, where pθt, Zt and rYt are
notations defined in the proof of Lemma 13 (with subscripts t added to emphasize that both Zt
and rYt are specific to the tth epoch in Algorithm 5). Because rYt “ Ztθ0t`εt (where θ0t “ ∇fpxtq
and ε “ pεt1, . . . , εtmq, with εti defined in Eq. (3.22)). we have

rθt “ pθt `
1

m
Z
J

t pZtθ0t ` εt ´ Zt
pθtq “ θ0t `

1

m
Z
J

t εt ` p
pΣ´ Ipd`1qˆpd`1qqp

pθt ´ θ0tq,

where pΣ “ 1
n
Z
J

t Zt. Recall that εti “ ξi{δ ` δzJi Htpκi, ziqzi. Define bi “ zJi Htpκi, ziqzi

and b “ pb1, . . . , bmq. Also note that the first d components of rθt are identical to rgt defined in
Eq. (3.24). Subsequently,

pgt “ gt `
1

mδ
ZJt ξ

looomooon

:“ζt

`
δ

m
ZJt b`

”

ppΣ´ Ipd`1qˆpd`1qqp
pθt ´ θ0tq

ı

1:d
looooooooooooooooooooooooomooooooooooooooooooooooooon

:“γt

. (3.112)

In Eq. (3.112) we divide pgt´ gt into two terms. We first consider the term ζt :“ 1
mδ
ZJt ξ. It is

clear that Erζt|xts “ 0 because Erξ|xt, Zts “ 0. Now consider any d-dimensional vector a P Rd,
and to simplify notations all derivations below are conditioned on xt. For any i P rms, zJtia
are i.i.d. sub-Gaussian random variables with common parameter ν2 “ }a}22. Also, ξi is a sub-
Gaussian random variable with parameter σ2 and is independent of zJtia. Thus, invoking Lemma
34 we have that ξizJtia is a sub-exponential random variable with parameters ν “ α{

?
2 À

σ}a}2. Consequently, xζt, ay “ 1
mδ

řm
i“1 ξiz

J
tia is a centered sub-exponential random variable

with parameters ν “
a

m{2 ¨ α À σ}a}2{δ
?
m.

We next consider the term γt “
δ
m
ZJt b ` p

pΣ ´ Iqppθt ´ θ0tq. By Assumption (A3) we know
that }b}8 ď δH . Subsequently, by Hölder’s inequality we have that

}γt}8 ď
δ

m
}Zt}1,8}b}8 ` }pΣ´ I}8}pθt ´ θt0}1
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À Hδ `

c

log d

m

˜

σs

δ

c

log d

m
` sδH

¸

.

where the second inequality holds with probability 1´Opd´2q thanks to Lemma 13.

3.6.3 Proof of Theorem 7
Because of the convexity of f , to prove Theorem 7 it suffices to upper bound 1

T 1

řT 1´1
t“0 fpxtq´f

˚.
We next cite the result in (Lan, 2012) that gives explicit cumulative regret bounds for mirror
descent with approximate gradients:
Lemma 35 (Lan (2012), Lemma 3). Let } ¨ }ψ and } ¨ }ψ˚ be a pair of conjugate norms, and let
∆ψp¨, ¨q be a Bregman divergence that is κ-strongly convex with respect to } ¨ }ψ. Suppose f is
rH-smooth with respect to } ¨ }ψ, meaning that fpyq ď fpxq`∇fpxqJpy´xq` rH

2
}x´y}2ψ for all

x, y P X , and η ă κ{ rH . Define gt “ ∇fpxtq, and let x0, . . . , xT 1´1 be iterations in Algorithm 5.
Then for every 0 ď t ď T 1 ´ 1 and any x˚ P rX ,

η rfpxt`1q ´ fpx
˚
qs`∆ψpxt`1, x

˚
q ď ∆ψpxt, x

˚
q`ηxrgt´gt, x

˚
´xty`

η2}rgt ´ gt}
2
ψ˚

2pκ´ rHηq
. (3.113)

Adding both sides of Eq. (3.113) from t “ 0 to t “ T 1 ´ 1, telescoping and noting that
∆ψpxT 1 , x

˚q ě 0, we obtain

1

T 1

T 1´1
ÿ

t“0

fpxtq ´ fpx
˚
q ď

∆ψpx0, x
˚q

ηT 1
`

1

T 1

T 1´1
ÿ

t“0

xrgt ´ gt, xt ´ x
˚
y `

η

2pκ´Hηq
¨ sup

0ďtăT 1
}rgt ´ gt}

2
ψ˚ .

(3.114)

Set }¨}ψ “ }¨}a for a “ 2 log d
2 log d´1

. It is easy to verify that under Assumption (A3), the function
f satisfies

fpyq ě fpxq `∇fpxqJpy ´ xq `H}y ´ x}28
ě fpxq `∇fpxqJpy ´ xq ` rH}y ´ x}2ψ

for all x, y P X with rH ď eH , because }x´y}21 ď d2p1´1{aq}x´y}2a ď d1{ log d}x´y}21 “ e}x´y}21
by Hölder’s inequality. In addition, by definition of Bregman divergence we have that

∆ψpx0, x
˚
q ď

1

2pa´ 1q
}x˚}2a ď

1

2pa´ 1q
}x˚}21 ď }x

˚
}

2
1 log d ď B2 log d, (3.115)

where the first inequality holds because ψapx0q “ ψap0q “ 0 and ∇ψapx0q “ ∇ψap0q “ 0 for
a ą 1.

We next upper bound the 1
T 1

řT 1´1
t“0 xrgt ´ gt, x

˚ ´ xty and }rgt ´ gt}
2
ψ˚ terms. By Lemma 14

and sub-exponential concentration inequalities (e.g., Lemma 91), we have that with probability
1´Opd´1q

}rgt ´ gt}8 ď }ζt}8 ` }γt}8 À
σ

δ

˜

c

log d

m
`

log d

m

¸

`Hδ `
σs log d

δm
À
σ

δ

c

log d

m
`Hδ
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uniformly over all t1 P t0, . . . , T 1´ 1u, where the last inequality holds because m “ Ωps2 log dq.
Subsequently, by Hölder’s inequality we have that

sup
0ďtăT 1

}rgt ´ gt}
2
ψ˚ ď d2pa´1q{a

¨ sup
0ďtăT 1

}rgt ´ gt}
2
8 À

σ2 log d

δ2m
`H2δ2. (3.116)

We now consider the first term 1
T 1

řT 1´1
t“0 xrgt´gt, x

˚´xty ď
1
T 1

řT 1´1
t“0 Xt`sup0ďtďT 1´1 }γt}8}x

˚´

xt}1, where Xt :“ xζt, x
˚ ´ xty. By Lemma 14, we know that Xt|X1, . . . , Xt´1 is a cen-

tered sub-exponential random variable with parameters ν “
a

m{2 ¨ α À σ}x˚ ´ xt}2{δ
?
n À

σ}x˚}1{δ
?
m. Invoking concentration inequalities for sub-exponential martingales ((Victor, 1999),

also phrased as Lemma 92 for a simplified version in the appendix) and the definition that
T 1 “ n{m, we have with probability 1´Opd´1q

ˇ

ˇ

ˇ

ˇ

1

T 1

T 1´1
ÿ

t“0

xζt, x
˚
´ xty

ˇ

ˇ

ˇ

ˇ

À
σ}x˚}1
δ

˜

c

log d

n
`

log d

n

¸

À
σ}x˚}1
δ

c

log d

n
,

where the last inequality holds because n ě m “ Ωps2 log dq. Thus,

ˇ

ˇ

ˇ

ˇ

1

T 1

T 1´1
ÿ

t“0

xrgt ´ gt, x
˚
´ xty

ˇ

ˇ

ˇ

ˇ

À
σ}x˚}1
δ

c

log d

n
` }x˚}1

ˆ

Hδ `
σs log d

δm

˙

. (3.117)

Combining Eqs. (3.115,3.116,3.117) with Eq. (3.114) and taking x˚ to be a minimizer of f on X
that satisfies }x˚}1 ď B, we obtain

1

T 1

T 1´1
ÿ

t“0

fpxtq ´ fpx
˚
q

À
}x˚}21 log d

η

m

n
`
σ}x˚}1
δ

c

log d

n
` }x˚}1

ˆ

Hδ `
σs log d

δm

˙

` η

ˆ

σ2 log d

δ2m
`H2δ2

˙

ď
B2 log d

η

m

n
`
σB

δ

c

log d

n
`B

ˆ

Hδ `
σs log d

δm

˙

` η

ˆ

σ2 log d

δ2m
`H2δ2

˙

(3.118)

with probability 1´Opd´1q, provided that η ă κ{2H “ 1{2H .
We are now ready to prove Theorem 7. By the conditions we impose on n and the choices of

η and m, it is easy to verify that η ă 1{2H , m “ Ωps2 log dq and m “ Opnq. Subsequently,

1

T 1

T 1´1
ÿ

t“0

fpxtq ´ fpx
˚
q

À B

c

m log d

n
` σB

c

m

sn
`Bpσ `Hq

c

s log d

m
`B

c

m log d

n

ˆ

σ2

s
` rOpm´1

q

˙

À B

ˆ

p1`Hq2s log2 d

n

˙1{4

`
σB

a

p1`Hq

s1{4n1{4
`
Bpσ `Hq
?

1`H

ˆ

s log2 d

n

˙1{4
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`B

ˆ

p1`Hq2s log d

n

˙1{4 ˆ
σ2

s
` rOpn´1{2

q

˙

À

ˆ

B
a

log d`
σB
?
s
`
σ2B

s

˙„

p1`Hq2s

n

1{4

`Bpσ `
?
Hq

a

log d
” s

n

ı1{4

` rOpn´1{2
q

À p1` σ ` σ2
{sqB

a

log d

„

p1`Hq2s

n

1{4

` rOpn´1{2
q.

3.6.4 Proof of Lemma 15
Using the model Eq. (3.22) we can decompose rgtpδq ´ gt as

rgtpδq ´ gt “
δ

2
E
“

pzJHtzqz
‰

`
1

nδ
ZJt ξ

loomoon

:“rζtpδq

`
δ

2n

n
ÿ

i“1

pzJi Htziqzi ´ ErpzJHtzqzs

loooooooooooooooooooomoooooooooooooooooooon

:“rβtpδq

`
δ

2n

n
ÿ

i“1

pzJi pHtpδziq ´Htqziqzi `
”

ppΣ´ Iqppθt ´ θ0tq

ı

1:d
loooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooon

:“rγtpδq

,

where pΣ, pθt and θ0t are similarly defined as in the proof of Lemma 14. The sub-exponentiality
of xrζtpδq, ay for any a P Rd is established in Lemma 14. We next consider rβtpδq. For any a P Rd

consider xrβtpδq, ay “ δ
2n

řn
i“1Xipaq where Xipaq “ pzJi Htziqpz

J
i aq ´ ErpzJi Htziqpz

J
i aqs are

centered i.i.d. random variables conditioned on Ht and xt. In addition, |Xipaq| ď 2}Ht}1}zi}
2
8 ¨

}a}1}zi}8 À H}a}1 almost surely. Therefore, Xipaq is a sub-Gaussian random variable with
parameter ν “ H}a}1, and hence xrβtpδq, ay is a sub-Gaussian random variable with parameter
ν “ δH}a}1{

?
n. Finally, for the deterministic term rγtpδq, we have that

}rγtpδq}8 ď
δ

2
sup

zPt˘1ud
}Htpδzq ´Ht}1}z}

2
8 ` }p

pΣ´ Iqppθt ´ θ0tq}8

ď
δ

2
sup

zPt˘1ud
L ¨ }δz}8}z}

2
8 ` }

pΣ´ I}max}
pθt ´ θ0t}8

À Lδ2
`

c

log d

n

˜

σs

δ

c

log d

n
` sδH

¸

À Lδ2
`
σs log d

nδ
` sδH

c

log d

n
.

3.6.5 Proof of Theorem 8
Because f is convex, it suffices to upper bound 1

T 1

řT 1´1
t“0 fpxtq ´ fpx

˚q, where x˚ P X , }x˚}1 ď
B is a minimizer of f over X . Using the strategy in the proof of Theorem 7, this amounts to
upper bound (with high probability) }rgtw

t ´ gt}
2
ψ˚ and 1

T 1

řT 1´1
t“0 xrg

tw
t ´ gt, x

˚ ´ xty.
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For the first term, using sub-exponentiality of rζt and sub-gaussianity of rβt, we have with
probability 1´Opd´1q uniformly over all t P t0, . . . , T 1 ´ 1u,

}rgtw
t ´ gt}8 ď }rζt}8 ` }rβt}8 ` }rγt}8

À
σ

δ

˜

c

log d

m
`

log d

m

¸

` δH

c

log d

m
` Lδ2

`Hδ

c

s2 log d

m
`
σs log d

δm

À

´σ

δ
` sδH

¯

c

log d

m
` Lδ2,

where the last inequality holds because m “ Ωps2 log dq. Subsequently, with probability 1 ´
Opd´1q

sup
0ďtďT 1´1

}rgtw
t ´ gt}

2
ψ˚ À

ˆ

σ2

δ2
` s2δ2H2

˙

log d

m
` L2δ4. (3.119)

For the other term 1
T 1

řT 1´1
t“0 xrg

tw
t ´ gt, x

˚ ´ xty, again using concentration inequalities of
sub-exponential/sub-Gaussian martingales and noting that }x˚ ´ xt}2 ď }x

˚ ´ xt}1 ď 2B, we
have

1

T 1

T 1´1
ÿ

t“0

xrgtw
t ´ gt, x

˚
´ xty “

1

T 1

T 1´1
ÿ

t“0

xrζt ` rβt ` rγt, x
˚
´ xty

À

´σ

δ
` sδH

¯

B

c

log d

n
`B

˜

Lδ2
`
σs log d

δm
` sδH

c

log d

m

¸

. (3.120)

Subsequently, combining Eqs. (3.119,3.120) with Eq. (3.114) we have

1

T 1

T 1´1
ÿ

t“0

fpxtq ´ fpx
˚
q

À
B2 log d

η

m

n
`

´σ

δ
` sδH

¯

B

c

log d

n
` pB ` ηq

˜

Lδ2
`
σs log d

δm
` sδH

c

log d

m

¸

` η

ˆ

σ2

δ2
` s2δ2H2

˙

log d

m
` ηL2δ4. (3.121)

We are now ready to prove Theorem 8. It is easy to verify that with the condition imposed
on n and the selection of η and m, it holds that η ă 1{2H , m “ Ωps2 log dq and m ď n{10.
Subsequently,

1

T 1

T 1´1
ÿ

t“0

fpxtq ´ fpx
˚
q

À Bm1{3

c

log d

n
`

«

σ

ˆ

m

s log d

˙1{3

` rOpm´1{3
q

ff

B

c

log d

n
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`

ˆ

B ` rO

ˆ

m2{3

?
n

˙˙

«

pL` σq

ˆ

s log d

m

˙2{3

` rOpm´5{6
q

ff

`Bm2{3

c

log d

n

˜

σ2

ˆ

m

s log d

˙2{3

` rOpm´2{3
q

¸

log d

m

`Bm2{3

c

log d

n
L2

ˆ

s log d

m

˙4{3

À Bm1{3

c

log d

n
` σB

ˆ

m

s log d

˙1{3
c

log d

n
`BpL` σq

ˆ

s log d

m

˙2{3

` σ2B

ˆ

m

s2 log2 d

˙1{3
c

log d

n
` rOpn´5{12

q

À

ˆ

B
a

log d`
σB
?

log d

s1{3
`
σ2B

?
log d

s2{3

˙„

p1` Lqs2{3

n

1{3

`
BpL` σq

p1` Lq2{3

ˆ

s2{3 log d

n

˙1{3

` rOpn´5{12
q

À

ˆ

B
a

log d`
σB
?

log d

s1{3
`
σ2B

?
log d

s2{3

˙„

p1` Lqs2{3

n

1{3

`Bσ
a

log d

ˆ

p1` Lqs2{3

n

˙1{3

` rOpn´5{12
q

À p1` σ ` σ2
{s2{3

qB
a

log d

ˆ

p1` Lqs2{3

n

˙1{3

` rOpn´5{12
q.

3.6.6 Proof of Lemma 16

Note that under minimal regularity conditions (under regularity conditions allowing the swapping
of differentiation and integration operators, Er∇ log ppuqs “

ş

ppuq∇ppuq
ppuq

du “
ş

∇ppuqdu “
∇r

ş

ppuqdus “ 0, where
ş

ppuqdu “ 1), Eµr∇ log ppuqs “ 0 and therefore Eryt∇ log pputqs “
fpxtqEr∇ log pputqs “ 0. The proposition is then immediate by Eq. (3.27).

3.6.7 Proof of Lemma 17

By the mean-value theorem, for any u P Rd there exists δpuq P p0, 1q such that

ˇ

ˇfpx` uq ´ fpxq
ˇ

ˇ “ x∇fpx` δpuquq, uy. (3.122)

By definition of dual norms (also known as the Cauchy-Schwarz inequality), for any vectors a, b
and pairs of dual norms } ¨ }p, } ¨ }q it holds that |xa, by| ď }a}p}b}q. Subsequently

ˇ

ˇfpx` uq ´ fpxq
ˇ

ˇ ď }∇fpx` δpuquq}q}u}p. (3.123)
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Using the fact that }∇fpzq}q ď L for all z we have |fpx` uq ´ fpxq| ď L}u}p for all u, and
hence

ˇ

ˇ rfpxq ´ fpxq
ˇ

ˇ “
ˇ

ˇEµrfpx` uq ´ fpxqs
ˇ

ˇ ď Eµ|fpx` uq ´ fpxq| ď LEµ}u}p. (3.124)

The second inequality is implied by the following lemma, with β “ p and r “ 1.
Lemma 36. Suppose u “ pu1, ¨ ¨ ¨ , udq with each component independently sampled from the
density ppuq “ p1´1{p

2δΓp1{pq
expt´|u|p{pδpu for some p P p1, 2s. Then for any β, r ě 1, we have

E}u}rβ À δrdr{β logr d

„

1`
δp1´1{pr!

Γp1{pq



.

Proof. For every t ą 0,

Prr|u1| ě ts “
p1´1{p

δΓp1{pq

ż 8

t

e´x
p{pδpdx “

p1´1{p

Γp1{pq

ż 8

t{δ

e´z
p{pdz (3.125)

ď
p1´1{p

Γp1{pq

ż 8

t{δ

e´z{2dz @t{δ ě 1, (3.126)

where the last inequality holds because e´zp{p ď e´z{2 for all z ě 1 and p P p1, 2s. Subsequently,
using a union bound over all j P t1, ¨ ¨ ¨ , du, we have

Pr
µ
r}u}8 ě ts ď

2p1´1{p

Γp1{pq
¨ de´t{2δ. @t ě δ.

For any β, r ě 1, we have

Eµ}u}rβ “ Eµ

˜

d
ÿ

i“1

|ui|
β

¸r{β

ď Eµdr{β}u}r8 (3.127)

ď dr{β
„

p2δ log dqr `
2dp1´1{p

Γp1{pq

ż 8

2δ log d

tre´t{2δdt



(3.128)

“ dr{β
„

p2δ log dqr ` δr`1
¨

2dp1´1{p

Γp1{pq

ż 8

2 log d

zre´z{2dz



. (3.129)

Applying integration by parts for r times, we have for all r P N that
ż 8

a

zre´z{2dz “ 2are´a ` 2r

ż 8

a

zr´1e´z{2dz “ . . .

“

r´1
ÿ

`“0

r!

pr ´ `´ 1q!
2``1ar´`e´a ` r!

ż 8

a

e´z{2dz

À 2r ¨
r
ÿ

`“0

a`e´a ď r ¨ p2aqr ¨ e´a. (3.130)
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Subsequently,

Eµ}u}rβ À dr{β
„

pδ log dqr ` δr`1
¨
dp1´1{p

Γp1{pq
¨ r!plog dqr ¨

1

d



À δrdr{β logr d` δr`1dr{β logr d ¨
p1´1{pr!

Γp1{pq

“ δrdr{β logr d

„

1`
δp1´1{pr!

Γp1{pq



. (3.131)

3.6.8 Proof of Lemma 18
By definition of pgt and the conditional independence between yt, y1t and ut, we have that

Eµ}pgt}2q “ Eµpyt ´ y1tq2}∇ log pputq}
2
q (3.132)

“ Eµpfpxtq ´ fpxt ` utq ` ξt ´ ξ1tq2}∇ log pputq}
2
q (3.133)

“ Eµp|fpxtq ´ fpxt ` utq|2 ` 2σ2
q}∇ log pputq}

2
q. (3.134)

Here the last identity holds because ξt, ξ1t are independent of fpxtq, fpxt ` utq, and therefore
E|fpxtq ´ fpxt ` utq ` ξt ´ ξ1t|2 “ E|fpxtq ´ fpxt ` utq|2 ` 2Epξt ´ ξ1tqpfpxtq ´ fpxt ` utqq `
E|ξt´ ξ1t|2 “ E|fpxtq´ fpxt`utq|2`E|ξt´ ξ1t|2 “ E|fpxtq´ fpxt`utq|2` 2σ2, because ξt, ξt1
are independent N p0, σ2q random variables.

By the mean-value theorem, for any ut there exists δputq P p0, 1q such that

fpxt ` utq ´ fpxtq “ x∇fpxt ` δputqutq, uty.

Again using the Cauchy-Schwarz inequality with respect to norm pair } ¨ }p, } ¨ }q and the uniform
boundedness of }∇fpzq}q, we have

ˇ

ˇfpxt ` utq ´ fpxtq
ˇ

ˇ ď }∇fpxt ` δputqutq}2q}ut}2p ď L2
}ut}

2
p. (3.135)

We next prove the second inequality. Note that Eµr}u}2p}∇ log ppuq}2qs “ Eµr}u}2p}ru}2qs{δ2{p,
where |rui| “ |ui|p´1 Using Cauchy-Schwarz inequality, we have that

Eµr}u}2p}∇ log ppuq}2qs “ Eµr}u}2p}ru}2qs{δ2{p
ď

b

E}u}4p ¨
b

E}u}4pp´1q
qpp´1q{δ

2p.

Invoking Lemma 36 we complete the proof of Lemma 18.

3.6.9 Proof of Theorem 9
For any x, y P Rd define Pxpyq :“ arg minzPX txy, z´ xy`Dψpz, xqu as the prox-mapping. The
following inequality is a classical result in mirror descent analysis.
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Lemma 37 (Nemirovski et al. (2009), Lemma 2.1). For any u, x, y P Rd, it holds that

Dψpu, Pxpyqq ď Dψpu, xq ` xy, u´ xy `
}y}2q

2
. (3.136)

The mirror descent update is given by xt`1 “ arg minxPX tηxx, pgtpxtqy `Dψpx, xtqu. Using
the language of prox-mapping, it can be re-written as xt`1 “ Pxtpηpgtpxtqq. Applying Lemma 37
with u “ x˚, x “ xt and y “ ηpgtpxtq, we have

Dψpx
˚, xt`1q ď Dψpx

˚, xtq ` ηxpgtpxtq, x
˚
´ xty `

η2}pgtpxtq}
2
q

2
. (3.137)

For simplicity denote rftp¨q ” Eµrfp¨ ` uqs. Because rft is convex, we have that rftpx
˚q ě

rftpxtq ` x∇ rftpxtq, x
˚ ´ xty for any x˚ P X . Plugging this into the above inequality, we have

Dψpx
˚, xt`1q ď Dψpx

˚, xtq ´ ηp rftpxtq ´ rftpx
˚
qq ` ηxpgtpxtq ´∇ rftpxtq, x

˚
´ xty `

η2}pgtpxtq}
2
q

2
.

Dividing both sides of the above inequality by η, telescoping and using the fact that Erpgtpxtq´
∇ rftpxtqs “ 0, we have

E

«

n
ÿ

t“1

rftpxtq ´ rftpx
˚
q

ff

ď
Dψpx

˚, x0q

η
` η ¨

n
ÿ

t“1

Er}pgtpxtq}2qs. (3.138)

On the other hand, by Lemmas 17 and 18, | rftpxtq ´ fpxtq| ď LEµ}u}p and E}pgtpxtq}2q ď
Eµrp2σ2 ` L2}u}2q}∇ log ppuq}2qs. Subsequently, taking x˚ P arg minxPX fpxq, we have

E

«

n
ÿ

t“1

fpxtq ´ f
˚

ff

À
Dψpx

˚, x0q

η
` L

n
ÿ

t“1

Eµr}u}ps ` η
n
ÿ

t“1

Eµrpσ2
` L2

}u}2pq}∇ log ppuq}2qs.

Note that Dψpx
˚, x0q ď }x

˚}2p{2 ď B when x0 “ 0. Applying again Lemmas 17, 18 and the
scalings of η, δ we complete the proof of Theorem 9.

3.6.10 Proof of Lemma 19
By the divergence theorem (a special case of the general Stokes theorem), for any differentiable
vector field F : Rd Ñ Rd we have

ż

K

d
ÿ

i“1

BFi
Bui

dV “

ż

BK

xF, `ydS, (3.139)

where dV and dS are the volume and surface integrals onK and BK, and ` denotes the outer nor-
mal vector on BK. Defining F puq “ fpx`δuqei for all u P K, where ei “ p0, ¨ ¨ ¨ , 0, 1, 0, ¨ ¨ ¨ , 0q
is the ith standard basis vector, we have BFi

Bui
“ r∇fpx` δuqsi, BFjBuj

“ 0 for j ‰ i and therefore
ż

K

δ∇fpx` δuqdV “
ż

BK

fpx` δvq`pvqdS.
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Subsequently,

δ

µdpKq
Eu„νK r∇fpx` δuqs “

1

µd´1pBKq
Ev„σBK rfpx` δvq`pvqs .

The lemma is then proved by using the definition that rfpxq “ Eu„νK rfpx` δuqs and interchang-
ing the expectation and integration.

3.6.11 Proof of Lemma 20
The differentiability and convexity of rf can be easily verified by definition. Because rf is a
local average of f , supxPX | rfpxq| ď supxPX |fpxq| ď C. Using the convexity of } ¨ }q we have
}∇ rfpxq}q “ }E∇fpx` δuq}q ď E}∇fpx` δuq}q ď L. In addition, by the mean value theorem,
for any x P Rd and u P K, there exists δ1 P p0, δq such that

fpx` δuq “ fpxq ` δx∇fpx` δ1uq, uy.

Because f satisfies |fpxq| ď C and }∇fpxq}q ď L for all x P X , we know that }∇fpx`δ1uq}q ď
L. Applying Hölder’s inequality we have

ˇ

ˇfpx` δuq ´ fpxq
ˇ

ˇ ď δL}u}p.

Consequently,
ˇ

ˇ rfpxq ´ fpxq
ˇ

ˇ ď Eu„νK
ˇ

ˇfpx` δuq ´ fpxq
ˇ

ˇ ď δL ¨ Eu„νK r}u}ps .

3.6.12 Proof of Lemma 21
For the sake of readability, in this section we shall use p, q instead of p, q for the norm parameters
when no confusion can be caused

Recall that for all v P BBdp with p P p1,8q, the outer normal product `pvq is unique and has
the form

`pvq “
psgnpv1q|v1|

p´1, sgnpv2q|v2|
p´1, ¨ ¨ ¨ , sgnpvdq|vd|

p´1q
a

|v1|
2pp´1q ` |v2|

2pp´1q ` ¨ ¨ ¨ ` |vd|2pp´1q
.

Let V p¨q and Sp¨q denote the volume and surface elements on Bdp and BBdp. Using the diver-
gence theorem in Eq. (3.139) with F puq “ u, we have

dˆ µdpBdpq “
ż

Bdp
ddV puq “

ż

Bdp

d
ÿ

i“1

BFipuq

Bui
dV puq “

ż

BBdp
xv, `pvqydSpvq (3.140)

“

ż

BBdp

@

v,
`

sgnpv1q|v1|
p´1, ¨ ¨ ¨ , sgnpvdq|vd|

p´1
˘D dSpvq

b

řd
i“1 |vi|

2p´2

(3.141)

“

ż

BBdp

dSpvq
b

řd
i“1 |vi|

2p´2

. (3.142)
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Here the last identity holds because
řd
i“1 |vi|

p “ 1 for all v P BBdp, by definition. Expressing the
surface integral in Eq. (3.142) using the uniform measure σd´1

p on BBdp, we obtain

dˆ µdpBdpq “ µd´1pBBdpq ˆ
ż

BBdp

dσd´1
p pvq

b

řd
i“1 |vi|

2p´2

. (3.143)

It remains to estimate the integration term in Eq. (3.143). However, the uniform surface
measure σd´1

p is complicated. To simplify the problem, we consider a closely related measure
γd´1
p on BBdp, conventionally referred in the literature as the cone measure (Naor, 2007; Naor &

Romik, 2003). More specifically, for any measurable A Ď BBdp, the cone measure γd´1
p satisfies

γd´1
p pAq “ µdptta : a P A, 0 ď t ď 1uq{µdpBdpq. (3.144)

It is remarked that γd´1
p ” σd´1

p for p P t1, 2,8u, but the two measures are in general
different for other values of p. Compared to the uniform surface measure σd´1

p , the cone measure
γd´1
p has a relatively simple probabilistic interpretation, which was first proved in (Rachev &

Ruschendorf, 1991; Schechtman & Zinn, 1990) and also summarized in (Naor, 2007; Naor &
Romik, 2003).
Lemma 38 (Naor (2007); Naor & Romik (2003)). Let X1, ¨ ¨ ¨ , Xd be i.i.d. random variables
with PDF fppxq “ 1{p2Γp1` 1{pqqe´|x|

p
. Define Z :“ pX1{}X}p, ¨ ¨ ¨ , Xd{}X}pq as a normal-

ized d-dimensional random vector. Then for any measurable A Ď BBdp, PrrZ P As “ γdppAq.

Remark 25. Clearly Z P BBdp with probability 1. The distribution of Z is commonly referred to
as the Lp norm distribution (Song & Gupta, 1997), and has found wide applications in statistics
and machine learning research (Gupta & Song, 1997; Sinz & Bethge, 2010).

The cone measure γd´1
p has several analytical advantages of the uniform surface measure

σd´1
p . One of the most important properties of the cone measure is its equivalence to a normalized

version of X “ pX1, ¨ ¨ ¨ , Xdq with independent component distributions. Such independence
structure gives rises to important concentration properties.
Proposition 13. For any p, r P r1,8q let X be the random variable distributed according to fp
in Lemma 38. Then E|X|r “ κpp, rq.

Proof. We have that

E|X|r “
1

Γp1` 1{pq

ż 8

0

tre´t
p

dt “
1

Γp1` 1{pq

1

p

ż 8

0

t
r`1
p
´1e´tdt

“
1

Γp1` 1{pq

1

p
Γ

ˆ

r ` 1

p

˙

“
Γpp1` rq{pq

Γp1{pq
.

Here in the second identity we apply the change-of-variable t ÞÑ t1{p and the last equality holds
because Γp1` 1{pq “ Γp1{pq{p. The proposition is therefore proved.
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Lemma 39. For any p, r P r1,8q let X1, ¨ ¨ ¨ , Xd be i.i.d. random variables distributed accord-
ing to fp in Lemma 38. Then for any ω P r0, 1s it holds that

Pr

«

p1´ d´
1´ω
2 qκpp, rq ˆ d ď

d
ÿ

i“1

|Xi|
r
ď p1` d´

1´ω
2 qκpp, rq ˆ d

ff

ě 1´
κpp, 2rq

κpp, rq2
d´ω.

(3.145)

Proof. Denote S :“
řd
i“1 |Xi|

r. By Proposition 13 we know that ES “ κpp, rq ˆ d. In addition,
because |Xi|

r are independent, we have

VarpSq “ dˆ Varp|Xi|
r
q ď dˆ E|Xi|

2r
“ κpp, 2rq ˆ d. (3.146)

Applying the Chebyshev’s inequality, we have that for all ε ą 0,

Pr
“
ˇ

ˇS ´ ES
ˇ

ˇ ą ε
‰

ď
κpp, 2rq ˆ d

ε2
. (3.147)

Setting ε “ κpp, rq ˆ dp1`ωq{2 we complete the proof of Lemma 39.

By dividing BBdp into a regular part (on which the event in Eq. (3.145) holds) and an irregular
part (on which the event in Eq. (3.145) potentially fails), we can estimate the integration of
1{
a

ř

i |vi|
2pp´1q with respect to the cone measure γd´1

p on BBdp.
Lemma 40. For any p P p1,8q, we have

ż

BBdp

dγd´1
p pvq

b

řd
i“1 |vi|

2pp´1q

“ p1` op1qq

d

κpp, pq2pp´1q{p

κpp, 2pp´ 1qq
d1{2´1{p as dÑ 8. (3.148)

Proof. Using Lemma 38, we can equivalently write ui “ xi{}x}p where x1, ¨ ¨ ¨ , xd are i.i.d. dis-
tributed according to fppxq “ 1{p2Γp1` 1{pqqe´|x|

p . For any r P r1,8q, letAωr denote the event
that Eq. (3.145) occurs with parameter ω. We shall set in the rest of the proof that ω “ 2{3.
Conditioned on the event A2{3

p XA2{3
2pp´1q, we have

d
ÿ

i“1

|xi|
p
“ p1˘ d´1{6

qκpp, pq ˆ d “ p1` op1qqκpp, pq ˆ d; (3.149)

d
ÿ

i“1

|xi|
2pp´1q

“ p1˘ d´1{6
qκpp, 2pp´ 1qq ˆ d “ p1` op1qqκpp, 2pp´ 1qq ˆ d. (3.150)

Subsequently, under A2{3
p XA2{3

2pp´1q we have that

g

f

f

e

d
ÿ

i“1

|vi|2pp´1q “

b

řd
i“1 |xi|

2pp´1q

b

p
řd
i“1 |xi|

pq2pp´1q{p

“

a

p1` op1qqκpp, 2pp´ 1qq ˆ d
a

rp1` op1qqκpp, pq ˆ ds2pp´1q{p
(3.151)
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“ p1` op1qq

d

κpp, 2pp´ 1qq

κpp, pq2pp´1q{p
ˆ d1{p´1{2. (3.152)

On the other hand, for all v P BBdp satisfying }v}p “ 1, applying Hölder’s inequality the term
a

ř

i |vi|
2pp´1q “ }v}p´1

2pp´1q can be lower bounded as

}v}p´1
2pp´1q ě

´

d
1

2pp´1q
´ 1
p ¨ }v}p

¯p´1

“ d1{p´1{2, p P r2,8q; (3.153)

}v}p´1
2pp´1q ě p}v}pq

p´1
“ 1, p P r1, 2s. (3.154)

Combining Eqs. (3.152,3.153,3.154) and using the total expectation formula we have

ż

BBdp

dγd´1
p pvq

b

řd
i“1 |vi|

2pp´1q

“ p1` op1qq

d

κpp, pq2pp´1q{p

κpp, 2pp´ 1qq
ˆ d1{2´1{p

ˆ γp´1
d pA2{3

p XA2{3
2pp´1qq

˘maxtd1{2´1{p, 1u ˆ γp´1
d p pA2{3

p XA2{3
2pp´1qqq. (3.155)

Invoking Lemma 39 with ω “ 2{3 and the union bound we know that γd´1
p pA2{3

p XA2{3
2pp´1qq “

1 ´ Opd´2{3q. Also note that both κpp, pq and κpp, 2pp ´ 1qq are positive constants depending
only on p. Subsequently,

ż

BBdp

dγd´1
p puq

b

řd
i“1 |ui|

2pp´1q

“ p1` op1qq

d

κpp, pq2pp´1q{p

κpp, 2pp´ 1qq
ˆ d1{2´1{p

`Opd´2{3
q (3.156)

and the lemma is proved, because 1{2´ 1{p ě ´2{3 for all p P r1,8q.

Lemma 40 constructs an estimate of the integration term in Eq. (3.143) by replacing the
uniform surface measure σd´1

p with the cone measure γd´1
p that is easy to deal with. It remains to

show that such substitution is valid asymptotically as dÑ 8. To this end, we cite the following
result due to Naor & Romik (2003), which shows that σp´1

d and γp´1
d are close to each other in

total variation under high-dimensional settings.
Lemma 41 (Naor & Romik (2003), Theorem 2). For any p P r1,8q, there exists a positive
constant cp ą 0 depending only on p such that TVpσd´1

p , γd´1
p q ď cp{

?
d.

Combining Lemmas 40 and 41, we have that for all p P p1,8q,
ż

BBdp

d|γd´1
p pvq ´ σd´1

p pvq|
b

řd
i“1 |vi|

2pp´1q

ď TVpγd´1
p , σd´1

p q ˆ sup
vPBBdp

1
b

řd
i“1 |vi|

2pp´1q

(3.157)

ď
cp
?
d
ˆmaxtd1{2´1{p, 1u “ op1q ˆ d1{2´1{p. (3.158)

Combining Eqs. (3.143,3.145,3.158) we obtain

ρpBdpq “
µd´1pBBdpq
µdpBdpq

“ dˆ p1` op1qq

d

κpp, 2pp´ 1qq

κpp, pq2pp´1q{p
ˆ d1{p´1{2
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“ p1` op1qq

d

κpp, 2pp´ 1qq

κpp, pq2pp´1q{p
ˆ d1{2`1{p.

Lemma 22 is then proved.

3.6.13 Proof of Lemma 23
In this section we use the notation of p, q instead of p, q for a cleaner presentation, when no
confusion will be caused. We first separate the case of p P r2,8q that is relatively easier to prove.
For p “ 8, with probability one `pvq “ ei for some i P rds, implying E}`pvq}2q “ E}`pvq}21 “ 1.
For p P r2,8q, because q ď 2, we can apply the Hölder’s inequality to obtain

Er}`pvq}2qs ď E
“

pd1{q´1{2
}`pvq}2q

2
‰

“ d2{q´1
“ d1{q´1{p, (3.159)

where the second to last equality holds because `pvq is an outer normal vector and therefore
always has unit `2 norm.

We next consider the relatively more difficult case of p P p1, 2q. We shall again use the cone
measure γd´1

p defined in Eq. (3.144) to approximate σd´1
p , the uniform surface measure on BBdp.

Recall that for all v P BBdp, p P p1, 2q, `pvq is unique and }`pvq}qq can be written as

}`pvq}2q “
p
řd
i“1 |vi|

qpp´1qq2{q

řd
i“1 |vi|

2pp´1q
“ }v}

2pp´1q
qpp´1q{}v}

2pp´1q
2pp´1q “ 1{}v}

2pp´1q
2pp´1q. (3.160)

Here the last identity holds because qpp´ 1q “ p and }v}p “ 1 for all v P BBdp.
Under the cone measure γd´1

p , the random variable v can be equivalently written as vi “
xi{}x}p, where x “ px1, ¨ ¨ ¨ , xdq are i.i.d. distributed with respect to the law fpptq “ 1{p2Γp1`
1{pqqe´|t|

p . Using the equivalent expression v “ x{}x}p, Eq. (3.160) can be re-formulated as

}`pvq}2q “ }x}
2pp´1q
p {}x}

2pp´1q
2pp´1q. (3.161)

Let Aωp X Aω2pp´1q denote the event in which Eq. (3.145) holds for r P t2pp ´ 1q, qpp ´ 1qu

with ω “ 1´ 2{q “ 2{p´ 1 P p0, 1q for p P p1, 2q. We then have, under Aωp XAω2pp´1q, that

d
ÿ

i“1

|vi|
p
“ p1` op1qqκpp, pqq ˆ d; (3.162)

d
ÿ

i“1

|vi|
2pp´1q

“ p1` op1qqκpp, 2pp´ 1qq ˆ d. (3.163)

Subsequently, under the uniform surface measure σd´1
p , we have

Ev„σd´1
p
r}`pvq}2qs ď

rp1` op1qqκpp, qpp´ 1qq ˆ ds2pp´1q{p

p1` op1qqκpp, 2pp´ 1qq ˆ d
ˆ σd´1

p pAωp XAω2pp´1qq

` 1ˆ σd´1
p p pAωp XAω2pp´1qqq (3.164)
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ď Opd1´2{p
q ` σd´1

p p Aωp q ` σd´1
p p Aω2pp´1qq (3.165)

“ Opd1{q´1{p
q ` σd´1

p p Aωp q ` σd´1
p p Aω2pp´1qq. (3.166)

It remains to show that σd´1
p p Aωp q and σd´1

p p Aω2pp´1qq are small. By Lemma 39, we know
that the cone measure version of this claim is true. More specifically, applying Lemma 39 with
ω “ 1´ 2{q P p0, 1q, we have

γd´1
p p Aωp q ` γd´1

p p Aω2pp´1qq “ Opd2{q´1
q “ Opd1{q´1{p

q. (3.167)

We then need to bound the discrepancy betwee γd´1
p and σd´1

p on  Aωp and  Aω2pp´1q. Unfor-
tunately, the TVpσd´1

p , γd´1
p q ď cp{

?
d bound in Naor & Romik (2003) is not strong enough

to establish the desired result. We thus resort to a stronger discrepancy result proved in Naor
(2007), summarized below:
Lemma 42 (Naor (2007), Theorem 7). For any p P p1, 2q, there exists an absolute constant
C ą 0 such that for every measurable A Ď BBdp,

ˇ

ˇ

ˇ

ˇ

ˇ

σd´1
p pAq

γd´1
p pAq

´ 1

ˇ

ˇ

ˇ

ˇ

ˇ

ď
C
?
d
¨

d

log

ˆ

100

γd´1
p pAq

˙

. (3.168)

Define α :“ maxtp2ω´1q{2ω, 0u and abbreviate σpAq “ σd´1
p p Aωp q, γpAq “ γd´1

p p Aωp q.
Because ω P p0, 1q, we have α P r0, 1{2q. Invoking Lemma 42 and Eq. (3.167), we have

σpAq ď γpAq `
CγpAq
?
d

d

log

ˆ

100

γpAq

˙

(3.169)

“ γpAq `
CγαpAq
?
d

d

γ2p1´αqpAq log

ˆ

100

γpAq

˙

(3.170)

“ Opd´ωq `Opd´ωq ¨

d

γ2p1´αqpAq log

ˆ

100

γpAq

˙

. (3.171)

Here the last line holds because γpAq “ Opd´ωq and γαpAq{
?
d “ Opd´ωq, because of the

definitions that ω “ 1´ 2{q “ 1{p´ 1{q and α ě p2ω ´ 1q{2ω. Furthermore, because γpAq “
Opd´ωq “ op1q and 2p1 ´ αq ą 0, we have γ2p1´αqpAq logp100{γpAqq “ op1q, and therefore
σpAq “ Opd´ωq “ Opd1{q´1{pq. The same reasoning and upper bound apply to σd´1

p p Aω2pp´1qq

and γd´1
p p Aω2pp´1qq as well. Plugging both upper bounds into Eq. (3.166) we prove the desired

result.

3.7 Proofs of results in Sec. 3.3

3.7.1 Proof of Proposition 10
For any x P X o and z P Rd define }z}x :“

a

zJ∇2ϕpxqz. The Dikin ellipsoid W1pxq is defined
as W1pxq :“

 

z P Rd : }z ´ x}x ď 1
(

for all x P X o. It is a well-known fact that W1pxq Ď X
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for all x P X o (Abernethy et al., 2008; Hazan & Levy, 2014; Saha & Tewari, 2011). It remains
to verify that z “ x` p∇2ϕpxq ` δIdq

´1{2u is in W1pxq. To see this, note that

}z ´ x}2x “ uJp∇2ϕpxq ` δIdq
´1{2∇2ϕpxqp∇ϕpxq ` δIdq´1{2u

“ }u}22 ´ δ}p∇2ϕpxq ` δIdq
´1{2u}22 ď }u}

2
2 “ 1.

Hence, z P W1pxq Ď X .

3.7.2 Proof of Theorem 11

Our proof of Theorem 11 is roughly divided into three steps. In the first step, we review existing
results for the RE algorithms on upper bounding the weak regret against stationary benchmarks.
In the second step, we present a novel local integration analysis that upper bounds the gap be-
tween regret against stationary and dynamic benchmarks using the Lp-norm difference between
two smooth and strongly convex functions. Finally, we use a sequence of Hölder’s inequality to
analyze the restarting procedure in the meta-policy described in the previous section.

Regret against stationary benchmarks. For a sequence of convex functions f “ pf1, ¨ ¨ ¨ , fT 1q,
an admissible policy π, the weak regret against any stationary point x˚ P X is defined as

Sφpf ;x˚q :“ Eπ
«

T 1
ÿ

t“1

ftpxtq

ff

´

T 1
ÿ

t“1

ftpx
˚
q. (3.172)

Compared to the regret against dynamic solution sequence Rπ defined in Eq. (4.28), in Sπ the
benchmark solution x˚ is forced to be stationary among all T 1 epochs, resulting in smaller regret.
In fact, it always holds that Sπpf ;x˚q ď Rπpfq for any f and x˚ P X . In the remainder of this
section, we shall refer to Sπ as the “weak regret” and Rπ as the “strong regret”.

The next lemma states existing results on upper bounding the weak regret of the RE policy
for adversarial function sequences f . The lemma is a simple extension of the weak regret bound
in Hazan & Levy (2014), with similar proofs.
Lemma 43. Fix 1 ď T 1 ď T . Let f “ pf1, ¨ ¨ ¨ , fT 1q be an arbitrary sequence of smooth and
strongly convex functions satisfying (A1) through (A5). Suppose ϕ is a strictly convex κ-self-
concordant barrier of X , with κ “ Opdq, and η “ dpH ` 10σ

?
log T q{

?
2T 1. Then

Sπpf ;x˚q “ Op
a

T 1 log T q, for all x˚ P X o
ν{T . (3.173)

Recall the definition that X o
ν{T :“ tx P X o : @z P Bdpν{T q, x` z P X u is the strict interior of X

that is at least ν{T apart from BX . Also, in both results we omit dependency on σ, d,D, ν,H, L
and M .

We note that when using this Lemma 3.173 in our later proofs, we will replace x˚ in (3.173)
by x˚t , which the is the minimizer of ft. By Assumption (A3) and the definition of X o

ν{T , we have
x˚t P X o

ν{T .
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Figure 3.5: The left figure illustrates how two functions f and g can have very different Lp
and L8 differences (1 ď p ă 8). Both functions are defined on X “ r0, 1s, with fpxq “

1?
2πε

exp
!

´
px´0.5q2

2ε2

)

and g ” 0. Because f is the pdf of a univariate Normal distribution with

zero mean and ε2 variance, f and g are essentially the same outside of r0.5 ´ 3ε, 0.5 ` 3εs,
leading to }f ´ g}p ď Opε1{pq ¨ }f ´ g}8 “ Opεp1´pq{pq, which can be arbitrarily smaller than
}f ´ g}8 “ Ωpε´1q for 1 ď p ă 8 and ε sufficiently small. The right figure provides a graphical
explanation of the key argument in the proof of Lemma 44. It shows that when x˚τ is far away
from x˚t , ft and fτ would have a large difference in a neighborhood around x˚t , because of the
strong convexity of fτ and the smoothness of ft. Since such difference is upper bounded by
}ft ´ fτ}p on the entire domain X , one can conclude that x˚t and x˚τ cannot be too far apart.

Gap between weak and strong regret By definition, the gap between Sπ and Rπ is indepen-
dent of policy π:

Rπ
pfq ´ Sπpf ;x˚τ q “

T 1
ÿ

t“1

ftpx
˚
τ q ´ ftpx

˚
t q, @τ P t1, ¨ ¨ ¨ , T 1u. (3.174)

Eq. (3.174) shows that it is possible to upper bound the regret gap by the two-point difference of
each function ft evaluated at the optimal solution x˚t of ft and the optimal solution x˚τ of fτ , for
arbitrary τ P t1, ¨ ¨ ¨ , T 1u. Such differences, however, can be large as x˚t could be far away from
x˚τ as the functions drift. In the special case of p “ 8, Besbes et al. (2015) observes

ftpx
˚
τ q ´ ftpx

˚
t q “ ftpx

˚
τ q ´ fτ px

˚
τ q ` fτ px

˚
τ q ´ ftpx

˚
t q ď ftpx

˚
τ q ´ fτ px

˚
τ q ` fτ px

˚
t q ´ ftpx

˚
t q

(3.175)

and further bounds both |ftpx˚τ q´fτ px
˚
τ q| and |fτ px˚t q´ftpx

˚
t q|with }ft´fτ}8. Such arguments,

however, meet significant challenges in the more general setting when 1 ď p ă 8, because
the difference between two functions at one point can be arbitrarily larger than the Lp-norm of
the difference of the two functions. We give an illustrative example in Figure 3.5, where two
functions f and g are presented, with }f ´ g}p{|fpxq ´ gpxq| Ñ 0 for x “ 0.5 and p ă 8.

In this paper we give an alternative analysis that directly upper bounds the left-hand side of
Eq. (3.175), ftpx˚τ q ´ ftpx

˚
t q (i.e., the difference of the same function ft at two points) using

}ft ´ fτ}p, The following is our key affinity lemma:
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Lemma 44. Suppose X Ď Rd. Fix 1 ď p ă 8, t ‰ τ and let x˚t , x
˚
τ be the minimizers of ft and

fτ , respectively. Then under (A1) through (A5) we have that

max
 ˇ

ˇftpx
˚
t q ´ ftpx

˚
τ q
ˇ

ˇ,
ˇ

ˇfτ px
˚
t q ´ fτ px

˚
τ q
ˇ

ˇ

(

“ O
`

}ft ´ fτ}
r
p

˘

where r “
2p

2p` d
P p0, 1q.

Proof. Without loss of generality we assume ftpx˚t q ď fτ px
˚
τ q throughout this proof. Define

δ “ }ft´fτ}
r{2
p . We first prove that }x˚t ´x

˚
τ }2 ď 2Cδ, whereC “ maxt

a

p4Dd{p ` 2Lq{M, 1u.
Assume by way of contradiction that }x˚t ´ x˚τ }2 ą 2Cδ. For any x P X o and α P p0, 1q

define Xαpxq :“ tx ` ρpy ´ xq : 0 ď ρ ď α, y P BX u. It is easy to verify that Xαpxq Ď X and
supx1PXαpxq }x

1´x}2 ď αD (recall thatD “ supy,y1PX }y´y
1}2 is the diameter ofX ). In addition,

volpXαpxqq ě αd ¨ volpX q, because X ´ x Ď α´1rXαpxq ´ xs, where X ´ x “ tz ´ x : z P X u
is the deflation of X by a specific vector, and similarly Xαpxq ´ x “ tz ´ x : z P Xαpxqu. Now
set α “ δ{D, and note that α ă 1{2 because D ě }x˚t ´ x

˚
τ }2 ą 2Cδ ě 2δ. By strong convexity

of fτ , we have @x P Xαpx˚t q,

fτ pxq ě fτ px
˚
τ q `

M

2
}x˚τ ´ x}

2
2 ě ftpx

˚
t q `

M

2
}x˚τ ´ x}

2
2 (3.176)

ě ftpx
˚
t q `

M

2
p2Cδ ´ δq2 ě ftpx

˚
t q `

MC2

2
δ2. (3.177)

Here Eq. (3.176) holds because fτ px˚τ q ě ftpx
˚
t q, and Eq. (3.177) is true because }x˚t ´ x˚τ }2 ą

2Cδ and }x ´ x˚t }2 ď αD “ δ ď Cδ for all x P Xαpx˚t q. On the other hand, by smoothness of
ft, we have that

ftpxq ď ftpx
˚
t q `

L

2
}x´ x˚t }

2
2 ď ftpx

˚
t q ` Lδ

2
@x P Xαpx˚t q. (3.178)

Combining Eqs. (3.177,3.178) we have that, for arbitrary 1 ď p ă 8 and x P Xαpx˚t q

ˇ

ˇfτ pxq ´ ftpxq
ˇ

ˇ

p
ě

ˇ

ˇ

ˇ

ˇ

ˆ

ftpx
˚
t q `

MC2

2
δ2

˙

´
`

ftpx
˚
t q ` Lδ

2
˘

ˇ

ˇ

ˇ

ˇ

p

ě pMC2
{2´ Lqpδ2p, (3.179)

provided that L ď MC2{2, which holds true because C ě
a

2L{M by definition. Integrating
both sides of Eq. (3.179) on Xαpx˚t q and recalling the definition of }ft ´ fτ}p, we have that

}ft ´ fτ}
p
p “

1

volpX q

ż

X
|ftpxq ´ fτ pxq|

pdx ě
1

volpX q

ż

Xαpx˚t q
|ftpxq ´ fτ pxq|

pdx

ě
volpXαpx˚t qq

volpX q
¨ pMC2

{2´ Lqpδ2p
ě

δd

Dd
¨ pMC2

{2´ Lqpδ2p

ě
pMC2{2´ Lqp

Dd
δ2p`d

“
pMC2{2´ Lqp

Dd
}ft ´ fτ}

p
p,

where the last equality holds because δ “ }ft ´ fτ}
r{2
p and p2p ` dq ¨ r{2 “ p. With C ě

a

p4Dd{p ` 2Lq{M , we have that pMC2{2´ Lqp{Dd ě 2d ą 1 and hence the contradiction.
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We have now established that }x˚t ´ x
˚
τ }2 ď 2Cδ ď Opδq. By smoothness of ft and fτ ,

ftpx
˚
t q ď ftpx

˚
τ q ď ftpx

˚
t q `

L

2
}x˚t ´ x

˚
τ }

2
2 ď ftpx

˚
t q `Opδ

2
q;

fτ px
˚
τ q ď fτ px

˚
t q ď fτ px

˚
τ q `

L

2
}x˚t ´ x

˚
τ }

2
2 ď fτ px

˚
τ q `Opδ

2
q.

The proof of Lemma 44 is then completed by plugging in δ “ }ft ´ fτ}
r{2
p .

Analysis of the re-starting procedure Recall that the T epochs are divided into J batches
B1, ¨ ¨ ¨ , BJ in the meta-policy, with each batch having either ∆T or ∆T ` 1 epochs. Applying
Lemmas 43, 44 together with Eq. (3.174) we have

Rπ
pfq ď

J
ÿ

`“1

inf
τPB`

$

&

%

Sπpfb` , ¨ ¨ ¨ , fb` ;x
˚
τ q `

b
ÿ̀

t“b`

ftpx
˚
τ q ´ ftpx

˚
t q

,

.

-

ď

J
ÿ

`“1

Op
a

|B`| log |B`|q ` |B`| ¨ sup
t,τPB`

ˇ

ˇftpx
˚
τ q ´ ftpx

˚
t q
ˇ

ˇ

ď O

ˆ

T

∆T

¨
a

∆T log ∆T

˙

`Op∆T q ¨

J
ÿ

`“1

sup
t,τPB`

}ft ´ fτ}
r
p

ď O

ˆ

T log T
?

∆T

˙

`Op∆T q ¨

J
ÿ

`“1

¨

˝

b`´1
ÿ

t“b`

}ft`1 ´ ft}p

˛

‚

r

. (3.180)

Here the last inequality holds because (assuming without loss of generality that b` ď t ď τ ď b`)
}ft ´ fτ}p ď

řτ´1
k“t }fk`1 ´ fk}p ď

řb`´1
k“b`

}fk`1 ´ fk}p.
We next present another key lemma that upper bounds the critical summation term in Eq. (3.180)

using J , ∆T and Varp,qpfq. The proof is based on consecutively applying the Hölder’s inequality.
Lemma 45. Suppose max1ď`ďJ |B`| ď ∆T ` 1, 1 ď q ď 8 and Varp,qpfq ď VT . Then

J
ÿ

`“1

¨

˝

b`´1
ÿ

t“b`

}ft`1 ´ ft}p

˛

‚

r

ď ∆
r´r{q
T ¨ J1´r{q

¨ T r{q ¨ V r
T .

Proof. By Hölder’s inequality, for any d-dimensional vector x we have that

}x}α ď }x}β ď d1{β´1{α
}x}α @ 0 ă β ď α ď 8. (3.181)

Apply Eq. (3.181) with α “ q and β “ 1 on x “ p}fb``1 ´ fb`}p, ¨ ¨ ¨ , }fb` ´ fb`´1}pq P R|B`|´1:

b`´1
ÿ

t“b`

}ft`1 ´ ft}p “ }x}1 ď |B` ´ 1|1´1{q
}x}q ď ∆

1´1{q
T ¨

¨

˝

b`´1
ÿ

t“b`

}ft`1 ´ ft}
q
p

˛

‚

1{q

.
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Subsequently,

J
ÿ

`“1

¨

˝

b`´1
ÿ

t“b`

}ft`1 ´ ft}p

˛

‚

r

ď

J
ÿ

`“1

∆
r´r{q
T ¨

¨

˝

b`´1
ÿ

t“b`

}ft`1 ´ ft}
q
p

˛

‚

r{q

. (3.182)

We next consider rx “ prx1, ¨ ¨ ¨ , rxJq P RJ , where rx` “
řb`´1
t“b`

}ft`1 ´ ft}
q
p. Apply Eq. (3.181)

with α “ 1 and β “ r{q on rx (β ă 1 because r P p0, 1q and q ě 1):

»

—

–

J
ÿ

`“1

¨

˝

b`´1
ÿ

t“b`

}ft`1 ´ ft}
q
p

˛

‚

r{q
fi

ffi

fl

q{r

“ }rx}r{q ď J1{β´1{α
¨ }rx}1 “ Jq{r´1

¨

J
ÿ

`“1

b`´1
ÿ

t“b`

}ft`1 ´ ft}
q
p.

Raise both sides of the inequality to the power of r{q and note that
řJ
`“1

řb`´1
t“b`

}ft`1 ´ ft}
q
p “

řT´1
t“1 }ft`1 ´ ft}

q
p ď T ¨ V q

T . We then have

J
ÿ

`“1

¨

˝

b`´1
ÿ

t“b`

}ft`1 ´ ft}p

˛

‚

r{q

ď J1´r{q
¨

¨

˝

J
ÿ

`“1

b`´1
ÿ

t“b`

}ft`1 ´ ft}
q
p

˛

‚

r{q

ď J1´r{qT r{qV r
T . (3.183)

Combining Eqs. (3.182,3.183) we proved the desired lemma.

We now prove Theorem 11 by combining Lemmas 43, 44 and 45 with Eq. (3.180) and setting
∆T appropriately. By Lemma 43, Sπpfb` , ¨ ¨ ¨ , fb` ;x

˚
τ q ď Op

a

|B`| log T q ď Op
?

∆T log T q for
φ “ φF

t pxt, ftq. Subsequently,

Rπ
φpfq ď OpJ

a

∆T log T q `Op∆
1`r´r{q
T J1´r{qT r{qV r

T q.

If VT “ OpT´p6p`dq{4pq, then we set ∆T “ T , J “ 1 and obtain regret rOp
?
T q ` OpT 1`rV r

T q “

rOp
?
T q. Otherwise, when VT “ ωpT´p6p`dq{4pq, one selects ∆T — V

´2r{p2r`1q
T “ V

´4p{p6p`dq
T

and observes that ∆T “ opT q. This yields a regret of rOpT ¨ V
2p{p6p`dq
T q.

3.7.3 Proof of Theorem 12

Let us first consider the simpler univariate case (d “ 1). The first step is to reduce the problem of
lower bounding regret to the problem of lower bounding success probability of testing sequences
of functions, for which tools from information theory such as Fano’s lemma (Cover & Thomas,
2006; Ibragimov & Has’minskii, 1981; Tsybakov, 2009; Yu, 1997) could be applied. We then
present a novel construction of two functions satisfying (A1) through (A5) and demonstrate that
such construction leads to matching lower bounds as presented in Theorem 12. Finally, we
extend the lower bound construction to multiple dimensions (d ą 1) via a change-of-variable
argument and complete the proof of general cases in Theorem 12.
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Before introducing the proof we first give the definition of an important concept that measures
the “discrepancy” between two functions f, rf : X Ñ R:

χpf, rfq :“ inf
xPX

max
!

fpxq ´ f˚, rfpxq ´ rf˚
)

where f˚ “ inf
xPX

fpxq, rf˚ “ inf
xPX

rfpxq.

Intuitively, χpf, rfq characterizes the best regret fpxq ´ f˚ one could achieve without knowing
whether f or rf is the underlying function. This quantity plays a central role in our reduction from
regret minimization to testing problems, as well as construction of indistinguishable functions
pairs.

From regret minimization to testing Consider a finite subset Θ “ tf1, ¨ ¨ ¨ , fMu Ď Fp,qpVT q.
The following lemma shows that if there exists an admissible policy π that achieves small regret
over Fp,qpVT q, then it leads to a hypothesis testing procedure that identifies the true function
sequence f in Θ with large probability:
Lemma 46. Fix 1 ď p ă 8, 1 ď q ď 8 and VT ą 0. Let Θ Ď Fp,qpVT q be a finite subset of
sequences of convex functions. Suppose there exists an admissible policy π such that

sup
fPFp,qpVT q

Rπ
pfq ď

1

9
¨ inf
f, rfPΘ

T
ÿ

t“1

χpft, rftq, (3.184)

then there exists an estimator pf such that

sup
fPΘ

Pr
f

”

f ‰ pf
ı

ď 1{3, (3.185)

where Prf denotes the probability distribution parameterized by the underlying true function
sequence f P Θ.

The proof of Lemma 67 is technical and given later. At a higher level, when there exists
an admissible policy π that achieves small regret over Fp,qpVT q (and hence small regret over
Θ Ď Fp,qpVT q too), then one can correctly identify the underlying function sequence f P Θ
with large probability by searching all function sequences in Θ and selecting the one that has the
smallest regret.

Reduction to testing is a standard approach for proving minimax lower bounds in stochastic
estimation and optimization problems (Agarwal et al., 2012; Besbes et al., 2015; Raskutti et al.,
2011). Motivations behind such reduction are a well-established class of tools that provide lower
bounds on failure probability in testing problems (Ibragimov & Has’minskii, 1981; Tsybakov,
2009; Yu, 1997). Let KLpP }Qq “

ş

log dP
dQ

dP denote the Kullback-Leibler divergence between
two distributions P and Q. We introduce the following version of the Fano’s inequality,
Lemma 47 (Fano’s inequality). Let Θ “ tθ1, ¨ ¨ ¨ , θMu be a finite parameter set of size M . For
each θ P Θ, let Pθ be the distribution of observations parameterized by θ. Suppose there exists
0 ă β ă 8 such that KLpPθ}Pθ1q ď β for all θ, θ1 P Θ. Then

inf
pθ

sup
θPΘ

Pr
θ

”

pθ ‰ θ
ı

ě 1´
β ` log 2

logM
. (3.186)
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Figure 3.6: The left figure gives a graphical depiction of functions constructed in the lower
bound, with thick solid lines corresponding to F0 and F1, and thin dashed lines corresponding
to Fλ with intermediate values λ “ 0.25 and λ “ 0.75. For the sake of better visualization,
the regions 0 ď x ď

?
h (I1) and

?
h ď x ď 2

?
h (I2) are greatly exaggerated. In the actual

construction both regions are very small compared to the entire domain X “ r0, 1s. The right
figure shows the two constructions of function sequences f on J “ 3 batches, according to
Eq. (3.190). At the beginning and the end of each batch the function is always F0.5, while within
each batch the values of λ first increase and then decrease, or vice versa, depending on the
coding ij P t0, 1u for the particular batch. Also note that λ will never be over 0.75 nor under
0.25 throughout the entire construction of the function sequence.

With Lemmas 67 and 47, the question of proving Theorem 12 is reduced to finding a “hard”
subset Θ Ď Fp,qpVT q such that the minimum discrepancy inff, rfPΘ

řT
t“1 χpft,

rftq is lower bounded
and the maximum KL divergence supf, rfPΘ KLpPf}P rf q is upper bounded. More precisely, the up-
per bound on the maximum KL divergence will provide a lower bound for right hand side of Eq.
(3.186), which contradicts Eq. (3.185) in Lemma 67. Therefore, the inequality in (3.184) will
not hold, which implies a lower bound on the regret. The construction of such a “worst-case
example” Θ is highly non-trivial and involves complex design of cubic splines, as we explain
in Figure 3.6 and the next paragraph. Below we first give such a construction for the univariate
(d “ 1) case and later extend the construction to higher dimensions.

Univariate constructions Fix X “ r0, 1s and 1{8T 2 ď h ď 1{8. Define F0, F1 : X Ñ R as
follows:

F0pxq :“

$

&

%

x2, 0 ď x ă
?
h;

4?
h
x3 ´ 11x2 ` 12

?
hx´ 4h,

?
h ď x ă 2

?
h;

8px´
?
hq2, 2

?
h ď x ď 1.

(3.187)

F1pxq :“

"

px´
?
hq2, 0 ď x ă

?
h;

8px´
?
hq2,

?
h ď x ď 1.

(3.188)

Further define
Fλ :“ F0 ` λpF1 ´ F0q, λ P r0, 1s (3.189)
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as a convex combination of F0 and F1. Figure 3.6 gives a graphical sketch of F0, F1 and Fλ. The
key insight in the constructions of F0 and F1 is to use a cubic function to connect two quadratic
functions of different curvatures, and hence allow Fλ to be the same on a wide region of X (in
particular r2

?
h, 1s) and produce small Lp difference }F0 ´ F1}p. In contrast, the lower bound

construction in existing work (Besbes et al., 2015) uses quadratic functions only, which are not
capable of producing smooth functions that differ locally and therefore only applies to the special
case of p “ 8.

The following lemma lists some properties of Fλ.
Lemma 48. The following statements are true for all λ, µ P r1{4, 3{4s.

1. Fλ satisfies (A1) through (A5) with D “ 2, ν “ 1{64, H “ 16, L “ 26 and M “ 2.
2. }Fλ ´ Fµ}8 ď |λ´ µ| ¨Ophq and }F 1λ ´ F

1
µ}8 ď |λ´ µ| ¨Op

?
hq.

3. }Fλ ´ Fµ}p ď |λ´ µ| ¨Ophp2p`1q{2pq for all 1 ď p ă 8.
4. χpFλ, F1´λq “ |1{2´ λ|

2 ¨ h{4.
We are now ready to describe our construction of a “hard” subset Θ Ď Fp,qpVT q. Note that

Fp,8pVT q Ď Fp,qpVT q for all 1 ď q ď 8 due to the monotonicity of Varp,qpfq. Therefore we shall
focus solely on the q “ 8 case, whose construction is automatically valid for all 1 ď q ď 8.

Let 1 ď J ď T be a parameter to be determined later, and define ∆T “ tT {Ju. Again
partition the entire T time epochs into J disjoint batches B1, ¨ ¨ ¨ , BJ , where each batch consists
of either ∆T or ∆T `1 consecutive epochs. Let t0, 1uJ be the class of all binary vectors of length
J and let I Ď t0, 1uJ be a certain subset of t0, 1uJ to be specified later. The subset Θ P Fp,8pVT q
is constructed so that each function sequence fi P Θ is indexed by a unique J-dimensional binary
vector i P I, with fi “ pfi,1, ¨ ¨ ¨ , fi,T q defined as

fi,pj´1q∆T`` “

$

’

’

&

’

’

%

F0.5`0.5`{|Bj |, ij “ 0, 1 ď ` ď t|Bj|{2u;
F0.75´0.5`{|Bj |, ij “ 0, t|Bj|{2u ă ` ď |Bj|;
F0.5´0.5`{|Bj |, ij “ 1, 1 ď ` ď t|Bj|{2u;
F0.25`0.5`{|Bj |, ij “ 1, t|Bj|{2u ă ` ď |Bj|.

1 ď j ď J. (3.190)

Figure 3.6 gives a visual illustration of the change pattern of fi and fi1 by plotting the values
of λ for each function in the constructed sequences. For a particular batch Bj , when ij “ i1j then
fi and fi1 are exactly the same within Bj; on the other hand, if ij “ 0 then fi will drift towards
the function F0 and if i1j “ 1 the functions fi1 will drift towards F1, creating gaps between fi
and fi1 within batch Bj . For regularity reasons, we constrain the λ value to be within the range
of p0.25, 0.75q regardless of ij values. We also note that fi and fi1 always agree on the first and
the last epochs within each batch. This property makes repetition of constructions across all J
batches possible. The following lemma lists some key quantities of interest between fi and fi1:

Lemma 49. Suppose ξt
i.i.d.
„ N p0, 1q For any i, i1 P t0, 1uJ consider fi and fi1 as defined in

Eq. (3.190). Then the following statements are true:
1. (Variation). Varp,qpfq ď Varp,8pfq ď Ophp2p`1q{2p{∆T q, for all 1 ď p ă 8 and 1 ď q ď
8.

2. (Discrepancy).
řT
t“1 χpfi,t, fi1,tq ě ∆Hpi, i

1q ¨Ωph∆T q, where ∆Hpi, i
1q “

řJ
j“1 Irij ‰ i1js

is the Hamming distance between i and i1.
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3. (KL divergence). Let P π
fi

be the distribution of tfi,tpxtq`ξtuTt“1, with txtuTt“1 Ď X selected
by an admissible policy π. Then for any such policy π we have that

KLpP π
fi
}P π

fi1
q ď ∆Hpi, i

1
q ¨Oph2∆T q.

The proof of Lemma 49 is deferred later.
Finally, we describe the construction of I Ď t0, 1uJ and the choices of J,∆T and h that

give rise to matching lower bounds. For simplicity we restrict ourselves to J being an even
number. The construction of I is based on the concept of constant-weight codings, where each
code i P I has exactly J{2 ones and J{2 zeros, and each pair of codes i, i1 P I have large
Hamming distance ∆Hpi, i

1q ě J{16. The construction of constant-weight codings originates
from (Graham & Sloane, 1980), and Wang & Singh (2016) gave an explicit lower bound on the
size of I, which we cite below:
Lemma 50 (Wang & Singh (2016), Lemma 9). Suppose J ě 2 and J is even. There exists
a subset I Ď t0, 1uJ such that @i P I,

řJ
j“1 ij “ J{2, and @i, i1 P I, ∆Hpi, i

1q ě J{16.
Furthermore, log |I| ě 0.0625J .

The univariate case of Theorem 12 can then be proved by appropriately setting the scalings
of h, ∆T and invoking Lemmas 48, 49 and 50. Because an Ωp

?
T q regret lower bound for

stationary stochastic online optimization is known (see, for example, (Hazan & Kale, 2014;
Jamieson et al., 2012)), we only need to prove the lower bound with the additional assumption
that VT “ ΩpT´p6p`dq{4pq. More specifically, we set h — V

2p{p6p`1q
T and ∆T — V

´4p{p6p`1q
T .

It is easy to verify that with the additional lower bound on VT , ∆T “ opT q and h Á 1{T 2,
and therefore the constructions are valid. A complete proof is given later after we introduce our
adversarial construction of d ą 1, which includes the univariate setting (d “ 1) as a special case.

Extension to higher dimensions The lower bound construction can be extended to higher
dimensions d ą 1 to obtain a matching lower bound of V 2p{p4p`dq

T ¨T for noisy gradient feedback
and V 2p{p6p`dq

T ¨T for noisy function value feedback. Let 1 “ p1, ¨ ¨ ¨ , 1q P Rd be a d-dimensional
vector with all components equal to 1. We consider X “ tx P Rd : x ě 0, 1Jx ď 1u. Define
F λ : X Ñ R as follows:

F λpxq :“ Fλp1
Jxq ` }x}22, λ P r0, 1s, x P X . (3.191)

Here Fλ is the univariate function defined in Eq. (3.189). Intuitively, the multi-variate function
F is constructed by “projecting” a d-dimensional vector x onto a 1-dimensional axis supported
on r0, 1s, and subsequently invoking existing univariate construction of adversarial functions.
An additional quadratic term }x}22 is appended to ensure the strong convexity of F λ without
interfering with the structure in Fλ. The following lemma lists the properties of F , which are
rigorously verified later this section.
Lemma 51. Suppose 1{8T 2 ď h ď 1{8. The following statements are true for any fixed d P N
and all λ, µ P r1{4, 3{4s.

1. F λ satisfies (A1) through (A5) with D “ 2, ν “ 1{16
?
d` 1, H “ 16

?
d ` 2, L “

26
?
d` 2 and M “ 2.

2. }F λ ´ F µ}8 ď |λ´ µ| ¨Ophq and supxPX }∇F λpxq ´∇F µpxq}2 ď |λ´ µ| ¨Op
?
hq.

102



3. }F λ ´ F µ}p ď |λ´ µ| ¨Oph
p2p`dq{2pq for all 1 ď p ă 8.

4. χpF λ, F 1´λq “
d
d`1

`

1
2
´ λ

˘2
¨ h.

The third property in Lemma 51 deserves special attention, which is a key property that
is significantly different from Lemma 48 for the univariate case, because the dependency of
}F λ ´ F µ}p on h has an extra term involving the domain dimension d in the exponent. At a
higher level, the presence of the Oph2p{p2p`dqq term comes from the concentration of measure
phenomenon in high dimensions.

We then have the next corollary, by following the same construction of Θ Ď Fp,qpVT q in the
univariate case and invoking Lemma 51:
Corollary 3. Suppose 1 ď J ď T is even, ∆T “ tT {Ju and 1{8T 2 ď h ď 1{8. Let I Ď t0, 1uJ
be constructed according to Lemma 50, and Θ “ tfi : i P Iu, where fi is defined in Eq. (3.190)
except that Fλ is replaced with its high-dimensional version F λ defined in Eq. (3.191). Then the
following holds:

1. (Variation). supfPΘ Varp,qpfq ď Ophp2p`dq{2p{∆T q for all 1 ď p ă 8, 1 ď q ď 8.

2. (Discrepancy). inff, rfPΘ
řT
t“1 χpft,

rftq ě ΩphT q.
3. (KL-divergence). For all admissible policy π, supf, rfPΘ KLpP π

f }P
π
rf
q ď Oph2T q.

We now prove the multi-dimensional case based on Corollary 3. Set h — V
2p{p6p`dq
T and

∆T accordingly such that Varp,8pfq ď Ophp2p`dq{2p{∆T q “ VT . This yields ∆T — V
´4p{p6p`dq
T

and J “ T {∆T — TV
4p{p6p`dq
T . The KL divergence is then upper bounded by Oph2T q “

OpTV
4p{p6p`dq
T q and log |Θ| “ ΩpJq “ ΩpTV

4p{p6p`dq
T q. By carefully selecting constants in the

asymptotic notations, one can make the right-hand side of Eq. (3.186) to be lower bounded by
1/2. Subsequently invoking Lemma 67, we conclude that there does not exist an admissible
policy π such that supfPFp,8pVT qR

πpfq ď 1{9 ¨ inff, rfPΘ
řT
t“1 χpft,

rftq. The lower bound proof is

then completed by the discrepancy claim in Corollary 3 that inff, rfPΘ
řT
t“1 χpft,

rftq ě Ωph2T q “

ΩpTV
2p{p6p`dq
T q.

Proof of Lemma 67 Let π be a policy that attains the minimax rate. By Markov’s inequality,
with probability 2{3 it holds that

1

T

T
ÿ

t“1

ftpxtq ´ ftpx
˚
t q ď

1

3
¨ inf
f, rfPΘ

T
ÿ

t“1

χpft, rftq, @f, rf P Θ. (3.192)

Define pf :“ arg min
pfPΘ

řT
t“1

pftpxtq ´ pftppx
˚
t q, where px˚t is the (unique) minimizer of pft. Let

pf˚t “ infxPX pftpxq and f˚t “ infxPX ftpxq. Because pf minimizes the “empirical” regret on
txtu

T
t“1, it holds that

T
ÿ

t“1

pftpxtq ´ pf˚t ď
T
ÿ

t“1

ftpxtq ´ f
˚
t .

Subsequently,

T
ÿ

t“1

χp pft, ftq “
T
ÿ

t“1

inf
xPX

max
!

pftpxq ´ pf˚t , ftpxq ´ f
˚
t

)
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ď

T
ÿ

t“1

max
!

pftpxtq ´ pf˚t , ftpxtq ´ f
˚
t

)

ď

T
ÿ

t“1

pftpxtq ´ pf˚t ` ftpxtq ´ f
˚
t

ď 2

˜

T
ÿ

t“1

ftpxtq ´ f
˚
t

¸

ď
2

3
¨ inf
f, rfPΘ

T
ÿ

t“1

χpft, rftq.

Therefore, we must have pf “ f conditioned on Eq. (3.192), which completes the proof.

Proof of Lemma 48 We verify the properties separately.
Verification of property 1: (A1) is obvious because X “ r0, 1s. We next focus (A3), (A4)
and (A5). It is easy to check that if two functions f and g satisfy (A3) through (A5), then their
convex combination f ` λpg ´ fq for λ P r0, 1s also satisfies (A3) through (A5). Therefore
we only need to verify these conditions for F0 and F1, respectively. We first prove that both
F0 and F1 are differentiable. Because both F0 and F1 are differentiable within each piece, to
prove the global differentiablity we only need to show that the left and right function values and
derivatives of F0 and F1 at x “

?
h and x “ 2

?
h are equal. Define F px`q “ limtÑ0` F px` tq,

F px´q “ limtÑ0´ F px ` tq, F 1px`q “ limtÑ0`
F px`tq´F pxq

t
and F 1px´q “ limtÑ0´

F px`tq´F pxq
t

.
We then have that F1p

?
h
`
q “ F0p

?
h
´
q “ h, F0p2

?
h
`
q “ F0p2

?
h
´
q “ 8h, F 10p

?
h
`
q “

F 10p
?
h
´
q “ 2

?
h, F 10p2

?
h
`
q “ F 10p2

?
h
´
q “ 16

?
h, F2p

?
h
`
q “ F1p

?
h
´
q “ 0, F 11p

?
h
`
q “

F 11p
?
h
´
q “ 0. Therefore, both F0 and F1 are differentiable on r0, 1s. It is then easy to check that

sup0ďxď1 maxt|F0pxq|, |F1pxq|u ď 8 and sup0ďxď1 maxt|F 10pxq|, |F
1
1pxq|u ď 16. Therefore (A3)

is satisfied with H “ 16.
To verify (A4) and (A5) we need to compute the second-order derivatives of F0 and F1. By

construction, F 20 pxq “ F 21 pxq “ 2 for x P r0,
?
hs, F 20 pxq “ F 21 pxq “ 8 for x P r

?
h, 1s, and

2 ď F 20 pxq ď 26 for x P r
?
h, 2
?
hs. Therefore, F0 and F1 satisfy (A4) and (A5) with L “ 26

and M “ 2. Note that F0 and F1 are not twice differentiable at x “
?
h and x “ 2

?
h: however,

this does not affect the smoothness and strong convexity of both functions.
Finally we check (A2). Let x˚λ be the unique minimizer of Fλ “ F0`λpF1´F0q. Elementary

algebra yields that x˚λ “ λ
?
h. Because h ě 1{8T 2, we know that Fλ satisfies (A2) with

ν “ 1{32 for λ P r1{4, 3{4s.
Verification of property 2: It is easy to see that }Fλ´Fµ}p “ |λ´µ|¨}F0´F1}p and }F 1λ´F

1
µ}p ď

|λ´µ| ¨ }F 10´F
1
1}p for all 1 ď p ď 8. Thus we only need to consider λ “ 0 and µ “ 1. It is easy

to verify that }F0 ´ F1}8 “ |F0p0q ´ F1p0q| “
?
h and }F 10 ´ F

1
1}8 “ |F0p0q

1 ´ F1p1q
1| “ 2h.

Verification of property 3: Similarly we only need to consider λ “ 0 and µ “ 1. Because F0

and F1 only differ on r0, 2
?
hs, we have that

}F0 ´ F1}p “

˜

ż 2
?
h

0

|F0pxq ´ F1pxq|
pdx

¸1{p

“ Oph1{2p
q ¨ }F0 ´ F1}8 “ Ophp2p`1q{2p

q.

Verification of property 4: We have that x˚λ “ λ
?
h and F ˚λ “ Fλpx

˚
λq “ λp1 ´ λqh. Subse-

quently, χpFλ, F1´λq “ Fλp
?
h{2q ´ F ˚λ “ p1{2´ λq

2 ¨ h{4.
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Proof of Lemma 49 Fix an arbitrary interval Ij for some j P t1, ¨ ¨ ¨ , Ju. Without loss of
generality assume |Ij| “ ∆T (the extra one function in some intervals can be safely neglected as
both T and ∆T are large). Then

sup
tPIj

}ft`1 ´ ft}p “
1

∆T

¨Ophp2p`1q{2p
q.

Subsequently,
Varp,8pfq “ sup

1ďtďT´1
}ft`1 ´ ft}p “ Ophp2p`1q{2p

{∆T q.

For the discrepancy term, again fix Ij for some j P t1, ¨ ¨ ¨ , Ju such that ij ‰ i1j . We then
have,

ÿ

tPIj

χpfi,t, fi1,tq ě 2

t∆T {2u
ÿ

t“0

χpF0.5`t{∆T
, F0.5´t{∆T

q ě 2

t∆T {2u
ÿ

t“0

ˆ

t

∆T

˙2

¨ Ωphq “ Ωph∆T q.

Subsequently, summing over all intervals with ij ‰ i1j we have that
řT
t“1 χpfi,t, fi1,tq ě ∆Hpi, i

1q¨

Ωph∆T q.
Finally we compute the KL divergence KLpP π

fi
}P π

fi1
q. Let yt “ ftpxtq`ξt be the random vari-

ables of the feedbacks and denote xt “ px1, ¨ ¨ ¨ , xtq and yt “ py1, ¨ ¨ ¨ , ytq. For any admissible
policy π, we have that

KLpP π
fi
}P π

fi1
q “ Efi,π

«

log
P π
fi
pxT , yT q

P π
fi1
pxT , yT q

ff

“ Efi,π

«

log
Pfipy

T |xT q ¨
śT

t“1 Pπpxt|y
t´1, xt´1q

Pfi1 py
T |xT q ¨

śT
t“1 Pπpxt|y

t´1, xt´1q

ff

“

T
ÿ

t“1

Efi,π
„

log
Pfi,tpyt|xtq

Pfi1 ,tpyt|xtq



ď

T
ÿ

t“1

sup
xPX

KLpPfi,tp¨|xq}Pfi1,tp¨|xqq.

Here the third identity holds because εt are independent. For yt “ ftpxtq ` ξt „ N pftpxtq, 1q, it
holds that

sup
xPX

KLpP φ
fi,t
p¨|xq}P φ

fi1,t
p¨|xqq “ sup

xPX

ˇ

ˇfi,tpxq ´ fi1,tpxq
ˇ

ˇ

2
“ }fi,t ´ fi1,t}

2
8 “ Oph2

q. (3.193)

where in the last inequality we invoke Lemma 48. Summing over t “ 1 to T we have that
KLpP π

fi
}P π

fi1
q “ Oph2T q.

Proof of Lemma 51 We verify the properties separately. Verification of property 1: Because
@x P X , }x}1 ď 1, we have that }x ´ y}2 ď }x ´ y}1 ď 2 for all x, y P X and therefore X
satisfies (A1) with D “ 2.
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We next verify (A3). Because Fλ is convex differentiable, it holds that F λpxq “ Fλp1
Jxq `

}x}22 is also convex differentiable because convexity is preserved with affine transform. In partic-
ular, supxPX F λpxq ď }Fλ}8`1 ď 9 and supxPX }F λpxq}2 ď supxPX |Fλp1

Jxq| ¨ }1}2`2}x}2 ď
16
?
d` 2. Therefore, (A3) is satisfied with H “ 16

?
d` 2.

To verify (A4) and (A5), note that F λ is twice differentiable except at points tx : 1Jx “?
hu Y tx : 1Jx “ 2

?
hu. Furthermore, ∇2F λpxq “ F 2λ p1

Jxq ¨ 11J ` 2Id. Subsequently, on
points x P X where F λ is twice differentiable, we have that ∇2F λpxq ĺ p}F 2λ}8

?
d ` 2qI “

p26
?
d ` 2qI and ∇2F λpxq ľ 2I . Therefore, (A4) and (A5) are satisfied with L “ 26

?
d ` 2

and M “ 2.
Finally we check (A2). Let x˚λ be the unique minimizer of F λ on X . It is clear that x˚λ must

take the form of x˚λ “ px
˚
λ, ¨ ¨ ¨ , x

˚
λq, which gives the smallest }x}22 without changing the value of

Fλp1
Jxq. Completing the squares in F λ we have that

F λpxλq “ dpd` 1q

«

x´
λ
?
h

d` 1

ff2

` λh

„

1´
λd

d` 1



. (3.194)

Subsequently, x˚λ “
λ
?
h

d`1
. It is easy to verify that for h ď 1{8, inftt ě 0 : x˚λ ` tu P X@u P

Bdp1qu ě }x˚λ}2 ě λ
a

h{pd` 1q. Therefore, for all λ P r1{4, 3{4s and 1{8T 2 ď h1 ď 1{8 the
condition (A2) holds with ν “ 1{16

?
d` 1.

Verification of property 2: }F λ´F µ}8 “ }Fλ´Fµ}8 “ Ophq. In addition, supxPX }∇F λpxq´
∇F µpxq}2 “ }F

1
λ ´ F 1µ}8 ¨ }1}2 “ Op

?
hdq. Omitting the dependency on d we obtain property

2.
Verification of property 3: Define rBdprq :“ tx P Rd : x ě 0, }x}1 ď ru. It is easy to verify that
volprBdpr1qq{volprBdpr2qq “ pr1{r2q

d. Subsequently, for any 1 ď p ă 8 we have that

}F 0 ´ F 1}p ď

«

volprBdp2
?
hqq

volprBdp1qq
¨ }F 0 ´ F 1}

p
8

ff1{p

“ Ophp2p`dq{2pq.

Verification of property 4: From previous derivations we know that x˚λ “ px˚λ, ¨ ¨ ¨ , x
˚
λq with

x˚λ “
λ
?
h

d`1
and F

˚

λ “ infxPX F λpxq “ λhp1´ λd
d`1
q. Subsequently,

χpF λ, F 1´λq “ F λ

˜

1

2

?
h

d` 1

¸

“
d

d` 1

ˇ

ˇ

ˇ

ˇ

1

2
´ λ

ˇ

ˇ

ˇ

ˇ

2

¨ h.
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Chapter 4

Dynamic assortment planning

Assortment planning has a wide range of applications in e-commerce and online advertising.
Given a large number of substitutable products, the assortment planning problem refers to the
selection of a subset of products (a.k.a., an assortment) offering to a customer such that the ex-
pected revenue is maximized (Agrawal et al., 2017a,b; Golrezaei et al., 2014; Kök et al., 2008;
Rusmevichientong & Topaloglu, 2012). Given N items, each associated with a revenue param-
eter 1 ri P r0, 1s representing the revenue a retailer collects once a customer purchases the i-th
item. The revenue parameters triuNi“1 are typically known to the retailer, who has full knowledge
of each item’s prices/costs.

Usually, the customer’s purchasing choice it is governed by a probabilisitic model

it „ pθ0p¨|Stq,

where θ0 is an underlying parameter characterizing the customer’s preferences of items. Ex-
amples include independent preference parameters vi for each i P rN s, or contextual models
vi “ exptxJi θ0u. Traditionally in the operations management literature, the parameters of the
customers’ choice model are fully known (assumed to be estimated from historical data), and the
assortment planning problem is merely a combinatorial optimization question. The readers are
referred to (Anderson et al., 1992; Kök et al., 2008) for some excellent surveys.

In many scenarios, customers’ choice behavior (e.g., mean utilities of products) may not be
given as a priori and cannot be easily estimated well due to the insufficiency of historical data
(e.g., fast fashion sale or online advertising). To address this challenge, dynamic assortment
planning that simultaneously learns choice behavior and makes decisions on the assortment has
received a lot of attentions (Agrawal et al., 2017a,b; Caro & Gallien, 2007; Rusmevichientong
et al., 2010; Saure & Zeevi, 2013). More specifically, in a dynamic assortment planning problem,
the seller offers an assortment to each arriving customer in a finite time horizon of length T . The
goal of the seller is to maximize the cumulative expected revenue over T periods, or equivalently,
to minimize the regret, which is defined as the gap between the expected revenue generated by
the policy and the oracle expected revenue when the mean utility for each product is known as a
priori.

In this chapter, we consider the dynamic assortment planning problem under variants of dis-
crete choice models, including the plain multinomial logit model (Sec.. 4.1), the nested logit

1The constraint ri ď 1 is without loss of generality, because it is only a normalization of revenues.
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choice model (Sec. 4.2) and a contextual choice model with linear regression modeling of con-
textual information (Sec. 4.3). For all works presented, algorithmic policy development and
theoretical regret analysis are the primarily focused aspects.

4.1 The plain multinomial logit model
Perhaps the simplest discrete choice model is the plain (or vanilla) logit choice model, which
associates with each item i an independent and unknown preference parameter vi ą 0. Given
assortment S Ď rN s, the logit choice model posits that (define v0 :“ 0 for notational simplicity)

Prri|Ss “
vi

1`
ř

i1PS vi1
, i P S Y t0u. (4.1)

The logit choice model is a cornerstone model in economics decision theory (Börsch-Supan,
1990; McFadden, 1980; Williams, 1977). It is also simple that comprehensive theoretical analy-
sis can be carried out. Under model Eq. (4.1), the expected revenue the retailer could collect by
presenting an assortment S Ď rN s to an incoming customer can be calculated as

RpSq “ Ei„pp¨|Sqrris “
ř

iPS rivi
1`

ř

iPS vi
. (4.2)

Suppose a policy π produces a sequence of assortment selections tStuTt“1 over T time periods,
with sequentially arriving customers. The (cumulative) regret of the assortment sequence tStuTt“1

can be subsequently defined as

RegretptStu
T
t“1q :“

T
ÿ

t“1

RpS˚q ´ EπrRpStqs where S˚ P arg max
S

RpSq. (4.3)

We also impose the condition maxi ri ď 1 throughout this section, which is only for normal-
ization purposes as the units of revenue measurement can be arbitrarily changed.

4.1.1 Popular assortments, level sets, and a potential function
For the MNL assortment selection model without capacity constraints, it is a classical result that
the optimal assortment must consist of items with the largest revenue parameters (see, e.g., Kök
et al. (2008)):
Proposition 14. There exists θ P r0, 1s such that Lθ :“ ti P rN s : ri ě θu satisfies RpLθq “
RpS˚q.

Proposition 14 suggests that it suffices to consider “level-set” type assortments Lθ “ ti P
rN s : ri ě θu and finds θ P r0, 1s that gives rises to the largest RpLθq.

Intuitively, F pθq is the expected revenue obtained by providing the assortment consisting of
all items whose revenues exceed or are equal to θ. The potential function plays a central role in
the development of our dynamic trisection search algorithm and item-independent regret bounds.
Similar idea of studying the expected revenue of revenue-ordered items was also considered
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Figure 4.1: Illustration of the potential function F pθq, the important quantities F ˚ and θ˚, and
their properties.

in Rusmevichientong & Topaloglu (2012). But we will derive a more comprehensive list of
properties of the potential function F to facilitate our algorithmic development and analysis.
The derived properties in this section could also be potentially useful for solving other assortment
planning problems under the MNL.

Because item revenues ri are discrete, F is a piecewise-constant function as illustrated in the
left picture in Fig. 4.1, where S “ ts1, ¨ ¨ ¨ , smu are the changing points of F . More specifi-
cally, we have the following proposition and its verification is easy from the definition and the
discretized nature of F .
Proposition 15. There exists c0, ¨ ¨ ¨ , cm ě 0 satisfying ci ‰ ci`1 for all i “ 0, ¨ ¨ ¨ ,m ´ 1, and
S “ ts1, ¨ ¨ ¨ , smu Ď triu

N
i“1, such that

F pθq “ c0 ¨ Irθ ď s1s `

m´1
ÿ

i“1

ci ¨ Irsi ă θ ď si`1s ` cm ¨ Irθ ą sms, (4.4)

where cm “ 0.
Define F ˚ :“ max0ďiďm ci “ supθě0 F pθq as the maximum value of F . By Proposition

14, we have the following corollary saying that F ˚ equals the expected revenue of the optimal
assortment.
Corollary 4. F ˚ “ RpS˚q.

We further establish some more refined structural properties of F . For notational simplicity,
let F px`q :“ limyÑx` F pyq and F px´q :“ limyÑx´ F pyq.
Lemma 52. There exists θ˚ ą 0 such that θ˚ “ F pθ˚q “ F ˚.
Lemma 53. For any θ ě θ˚, F pθq ď θ and F pθq ě F pθ`q.
Lemma 54. For any θ ď θ˚, F pθq ě θ and F pθq ď F pθ`q.

The proofs of the above lemmas are given later. Lemmas 52, 53 and 54 provide a complete
picture of the structure of the potential function F , and most importantly the relationship be-
tween F and the central straight line F pθq “ θ, as depicted in the right picture of Fig. 4.1. In
particular, F intersects with the y “ x line at θ˚ that attains the maximum function value F ˚,
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and monotonically decreases as one moves away from θ˚, meaning that F is uni-modal. Further-
more, Lemmas 53 and 54 show that (1) F is left-continuous; (2) F ˚ lies below the y “ x line
to the right of θ˚ and above the y “ x line to the left of θ˚. This helps us judge the positioning
of a particular revenue level θ by simply comparing the expected revenue of RpLθq with θ itself,
motivating an asymmetric trisection algorithm which we describe in the next section.

4.1.2 The trisection algorithm and its regret

We propose an algorithm based on trisections of the potential function F in order to locate level
θ˚ at which the maximum expected revenue F ˚ “ F pθ˚q is attained. Our algorithm avoids
explicitly estimating individual items’ mean utilities tviuNi“1, and subsequently yields a regret
independent of the number of items N .

To assist with readability, below we list notations used in the algorithm description together
with their meanings:
- aτ and bτ : left and right boundaries that contain θ˚; it is guaranteed that aτ ď θ˚ ď bτ with

high probability, and the regret incurred on failure events is strictly controlled;

- xτ and yτ : trisection points; xτ is closer to aτ and yτ is closer to bτ ;

- `tpyτ q and utpyτ q: lower and upper confidence bands for F pyτ q established at iteration t; it
is guaranteed that `tpyτ q ď F pyτ q ď utpyτ q with high probability, and the regret incurred on
failure events is strictly controlled;

- ρtpyτ q: accumulated reward by exploring level set Lyτ up to iteration t.
With these notations in place, we provide a detailed description of Algorithm 8 to facilitate

the understanding. The algorithm operates in epochs (outer iterations) τ “ 1, 2, ¨ ¨ ¨ until a
total of T assortment selections are made. The objective of each outer iteration τ is to find the
relative position between trisection points (xτ , yτ ) and the “reference” location θ˚, after which
the algorithm either moves aτ to xτ or bτ to yτ , effectively shrinking the length of the interval
raτ , bτ s that contains θ˚ to its two thirds. Furthermore, to avoid a large cumulative regret, level
set corresponding to the left endpoint aτ is exploited in each time period within the epoch τ to
offset potentially large regret incurred by exploring yτ .

In Steps 9 and 10 of Algorithm 8, lower and upper confidence bands r`tpyτ q, utpyτ qs for
F pyτ q are constructed using concentration inequalities (e.g. Hoeffding’s inequality (Hoeffding,
1963)). These confidence bands are updated until the relationship between yτ and F pyτ q is
clear, or a pre-specified number of inner iterations for outer iteration τ has been reached (set to
nτ :“ r16pyτ ´ xτ q

´2 lnpT 2qs in Step 8). Algorithm 9 gives detailed descriptions on how such
confidence intervals are built, based on repeated exploration of level set Lyτ .

After sufficiently many explorations of Lyτ , a decision is made on whether to advance the
left boundary (i.e., aτ`1 Ð xτ ) or the right boundary (i.e., bτ`1 Ð yτ ). Below we give high-level
intuitions on how such decisions are made, with rigorous justifications presented later as part of
the proof of the main regret theorem for Algorithm 8.
1. If there is sufficient evidence that F pyτ q ă yτ (e.g., utpyτ q ă yτ ), then yτ must be to the right

of θ˚ (i.e., yτ ě θ˚) due to Lemma 53. Therefore, we will shrink the value of right boundary
by setting bτ`1 Ð yτ .
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Algorithm 8 The trisection algorithm.
1: Input: revenue parameters r1, ¨ ¨ ¨ , rn P r0, 1s, time horizon T
2: Output: sequence of assortment selections S1, S2, ¨ ¨ ¨ , ST Ď rN s
3: Initialization: a0 “ 0, b0 “ 1;
4: for τ “ 0, 1, ¨ ¨ ¨ do
5: xτ “

2
3
aτ `

1
3
bτ , yτ “ 1

3
aτ `

2
3
bτ ; Ź trisection

6: `0pxτ q “ `0pyτ q “ 0, u0pxτ q “ u0pyτ q “ 1; Ź initialization of confidence intervals
7: ρ0pxτ q “ ρ0pyτ q “ 0; Ź initialization of accumulated rewards
8: for t “ 1 to 16rpyτ ´ xτ q

´2 lnpT qqs 3 do
9: if `t´1pyτ q ď yτ ď ut´1pyτ q then ρtpyτ q, `tpyτ q, utpyτ q Ð EXPLOREpyτ , t, 1{T

2q;
Ź Explore the right midpoint yτ

10: elseρtpyτ q, `tpyτ q, utpyτ q Ð ρt´1pyτ q, `t´1pyτ q, ut´1pyτ q
11: end if
12: end for
13: Exploit the left endpoint aτ : pick assortment S “ Laτ ;
14: end for

Ź Update trisection parameters
15: if utpyτ q ă yτ then aτ`1 “ aτ , bτ`1 “ yτ ;
16: elseaτ`1 “ xτ , bτ`1 “ bτ .
17: end if

Algorithm 9 EXPLORE Subroutine: exploring a certain revenue level θ
1: Input: revenue level θ, time t, confidence level δ
2: Output: accumulated revenue ρtpθq, confidence intervals `tpθq and utpθq
3: Pick assortment S “ LθpN q and observe purchasing action j P S Y t0u;
4: Update accumulated reward: ρtpθq “ ρt´1pθq ` rj Ź r0 :“ 0

5: Update confidence intervals: r`tpθq, utpθqs “
ρtpθq
t ˘

b

logp1{δq
2t .

2. On the other hand, when utpyτ q ě yτ , we can conclude that xτ must be to the left of θ˚ (i.e.,
xτ ď θ˚). We show this by contradiction. Assuming that xτ ą θ˚, since yτ is always greater
than xτ (and thus yτ ą θ˚) and the gap between yτ and F pyτ q is at least yτ ´xτ 2, the gap will
be detected by the confidence bands and thus we will have utpyτ q ă yτ with high probability.
This leads to a contradiction.
Therefore, since xτ is to the left of θ˚, we should increase the value of the left boundary by
setting aτ`1 Ð xτ .

The following theorem is our main upper bound result for the (worst-case) regret incurred by
Algorithm 8.

Theorem 13. There exists a universal constant C1 ą 0 such that for all parameters tviuNi“1 and

2By Lemma 53, we have yτ ´ F pyτ q ě yτ ´ F pxτ q ě yτ ´ xτ
3Stop whenever the maximum number of iterations T is reached.
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triu
N
i“1 satisfying ri P r0, 1s, the regret incurred by Algorithm 8 satisfies

RegretptStu
T
t“1q “ E

T
ÿ

t“1

RpS˚q ´RpStq ď C1

a

T log T . (4.5)

4.1.3 Improved regret with adaptive confidence intervals
In this section we consider a variant of Algorithm 8 that achieves an improved regret of Op

?
T q.

The key idea is to use an adaptive allocation of confidence levels, by allowing larger failure
probability as more data are collected. This is because later failures result in smaller accumulated
regret. Such a strategy is motivated by the MOSS algorithm (Audibert & Bubeck, 2009) for
multi-armed bandits. However, our analysis is quite different from (Audibert & Bubeck, 2009),
involving new concentration inequalities and induction arguments tailored specifically to our
model and proposed policy.

We start with a new uniform concentration inequality for adaptively chosen confidence levels.
Lemma 55. Let X1, ¨ ¨ ¨ , XL be i.i.d. random variables with mean µ and satisfy a ď Xi ď b
almost surely for all ` P rLs. For any δ P p0, 1s, it holds that

Pr

«

@` P rLs,

ˇ

ˇ

ˇ

ˇ

ˇ

1

`

ÿ̀

i“1

Xi ´ µ

ˇ

ˇ

ˇ

ˇ

ˇ

ď

c

2pb´ aq2 lnp8{pδ`qq

`

ff

ě 1´ Lδ. (4.6)

The proof of Lemma 55 is deferred later, based on a careful doubling argument with Ho-
effding’s maximal inequality (Hoeffding (1963), re-phrased in Lemma 93). Compared to the
classical Hoeffding’s inequality (Lemma 89) with the union bound, one notable difference is the

increasing “failure probability” as ` increases (effectively `δ in
b

2 lnp8{pδ`qqpb´aq2

`
instead of δ).

This allows the confidence intervals to be much shorter for large `.
With Lemma 55, we are ready to describe the variant of Algorithm 8, which attains the

tight regret bound. Most steps in Algorithms 8 and 9 remain unchanged, and the changes are
summarized below:
- Step 5 in Algorithm 9 is replaced with

r`tpθq, utpθqs “
ρtpθq

t
˘

c

2 lnr8{pδtqs

t
. (4.7)

- Step 9 in Algorithm 8 is replaced with EXPLOREpyτ , t, 1{T q; correspondingly, the number of
inner iterations is changed to nτ “ 8rpyτ ´ xτ q

´2 lnp8T pyτ ´ xτ q
2qs.

The first change for improving the regret is the way how confidence intervals r`tpθq, utpθqs
of F pθq is constructed. Instead of using fixed confidence level 1{T 2 as in the baseline policy, in
the revised policy varying confidence levels are employed, with “effective” failure probabilities
increase as the algorithm collects more data.

We also remark that similar confidence parameter choices were also adopted in (Audibert &
Bubeck, 2009) to remove additional logpT q factors in multi-armed bandit problems.

The following theorem shows that the algorithm variant presented above achieves an asymp-
totic regret of Op

?
T q, considerably improving Theorem 13 with an Op

?
T log T q regret bound.
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Theorem 14. There exists a universal constant C2 ą 0 such that for all parameters tviuNi“1 and
triu

N
i“1 satisfying ri P r0, 1s, the regret incurred by the variant of Algorithm 8 described above

satisfies

RegretptStu
T
t“1q “ E

T
ÿ

t“1

RpS˚q ´RpStq ď C2

?
T . (4.8)

4.1.4 Lower bound: the uncapacitated setting
In this section we prove a matching lower bound of the worst-case regret attainable by any
policy π, under the “uncapacitated setting” in which there is no capacity constraint imposed on
the provided assortments tStu.
Theorem 15. Let N and T be the number of items and the time horizon that can be arbitrary.
There exists revenue parameters r1, ¨ ¨ ¨ , rN P r0, 1s such that for any policy π,

sup
v1,¨¨¨ ,vNě0

RegretptStu
T
t“1q ě

?
T

384
. (4.9)

Theorem 15 shows that our regret upper bounds in Theorems 13 and 14 are tight up to an
Op
?

log T q term and/or numerical constants.

4.1.5 Lower bound: the capacitated setting
In the capacitated setting, capacity constraints are imposed on the supplied assortments. More
specifically, the provided assortments tStuTt“1 must satisfy |St| ď K for all t, for some pre-
specified capacity limit K ď N . The uncapacitated setting would then be the special case of
K “ N .

In the case of K ă N , the trisection algorithms we considered in the previous section will
no longer be valid, as the key popular set structure (displayed in Proposition 14) is violated
when K ă N . The works of Agrawal et al. (2017a,b) considered alternative UCB or Thompson
sampling based approaches, and established regret upper bounds on the order of rOp

?
NT q, which

incurs an extra Op
?
Nq term compared to Theorems 13 and 14.

In this section, we shall prove the following result, showing that such worsened regret upper
bounds cannot be improved when the capacity constraint parameter K is much smaller than the
total number of products N .
Theorem 16. Suppose K ď N{4. There exists an absolute constant C ě 10´3 independent of
N , T and K such that for all policy π,

sup
v1,¨¨¨ ,vNě0

RegretptStu
T
t“1q ě C ¨mint

?
NT, T u. (4.10)

Remark 26. When the revenue parameters triuNi“1 are uniformly bounded (i.e., ri ď 1 for all i),
a trivial policy that outputs an arbitrary fixed assortment attains regret OpT q, meaning that the
Ωp
?
NT q regret cannot be optimal when T ! N . In the more common scenario of T “ ΩpNq,

the
?
NT term in Eq. (4.10) dominates, leading to an Ωp

?
NT q regret lower bound.
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Remark 27. In the work of Agrawal et al. (2017b), a regret lower bound of Ωp
a

NT {Kq is
established, which matches Theorem 16 when K is a small constant but deteriorates to Ωp

?
T q

when K is smaller but on the same order of N . In contrast, our result in Theorem 16 establishes
an Ωp

?
NT q even if K is as large as N{4.

We also remark that the “capacity constraint” K ď N{4 in Theorem 15 is essential. In the
case of K “ N , Theorems 13, 14, as well as previous works (Rusmevichientong et al., 2010),
establish regret upper bounds that depend logarithmically or even independent of N . In the case
of N{4 ă K ă N , we conjecture that the lower bound in Theorem 16 remains valid provided
that K{N Ñ γ for some constant γ ă 1{2, by selecting constants in Eq. (4.85) more carefully. It
is, however, unclear to us how the regret will behave for γ ě 1{2 and we leave it as an interesting
technical open problem. We remark that for capacitated problems the K ď N{4 condition is
very weak and could be easily satisfied in practice, because at each time an incoming customer
can only be offered an assortment with much fewer items (as compared to the entire commodity
pool).

Finally, there is still a gap of Oplog T q between our Theorem 16 and the regret upper bounds
established in the work of Agrawal et al. (2017a). We leave this as another interesting open
question.

4.1.6 Numerical results
We present numerical results of our proposed trisection (and its improved variant) algorithm and
compare their performance with several competitors on synthetic data.

Experimental setup. We generate each of the revenue parameters triuNi“1 independently and
identically from the uniform distribution on r.4, .5s. For the preference parameters tviuNi“1, they
are generated independently and identically from the uniform distribution on r10{N, 20{N s,
where N is the total number of items available.

To motivate our parameter setting, consider the following three types of assortments: the
“single assortment” S “ tiu for some i P N , the “full assortment” S “ t1, 2, ¨ ¨ ¨ , Nu, and the
“appropriate” assortment S “ ti P N : ri ě 0.42u. For the single assortment S “ tiu, because
the preference parameter for each item is rather small (vi ď 20{N ), no single assortment can
produce an expected revenue exceeding 0.5ˆ p20{Nq{p1` 20{Nq “ 10{p20`Nq. For the full
assortment S “ t1, 2, ¨ ¨ ¨ , Nu, because

řN
i“1 rivi

p
Ñ 0.45ˆ15{NˆN “ 6.75 and

řN
i“1 vi

p
Ñ 15

by the law of large numbers, the expected revenue of S is around 6.75{p1` 15q “ 0.422. Finally,
for the “appropriate” assortment S “ ti P N : ri ě 0.42u, we have

ř

iPS rivi
p
Ñ 0.46ˆ 15{N ˆ

0.8N “ 5.52 and
ř

iPS vi
p
Ñ 15{N ˆ 0.8N “ 12. Therefore, the expected revenue of S is

around 5.52{p1` 12q “ 0.425 ą 0.422. The above discussion shows that a revenue threshold
r˚ P p0.4, 0.5q is mandatory to extract a portion of the items ti P N : ri ě r˚u that attain
the optimal expected revenue, which is highly non-trivial for a dynamic assortment selection
algorithm to identify.

Comparative methods. Our trisection algorithm withOp
?
T log T q regret is denoted as TRISEC,

and its improved adaptive variant (with regret Op
?
T q) is denoted as ADAP-TRISEC. The other
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Table 4.1: Average (mean) and worst-case (max) regret of our trisection (TRISEC.) and adaptive
trisection (ADAP-TRISEC.) algorithms and their competitors on synthetic data. N is the number
of items and T is the time horizon.

UCB THOMPSON GRS TRISEC. ADAP-TRISEC.
pN, T q mean max mean max mean max mean max mean max
(100,500) 34.9 38.1 1.28 2.97 10.9 22.4 7.68 7.68 1.99 1.99
(250,500) 54.3 56.2 2.81 4.95 7.93 34.2 7.57 7.57 2.23 2.23
(500,500) 73.4 75.5 4.90 4.95 7.02 43.4 7.43 7.43 2.23 2.23
(1000,500) 90.3 93.5 8.17 10.7 5.34 45.1 7.44 7.44 2.25 2.25

(100,1000) 73.1 78.2 1.36 2.79 139.9 175.0 8.69 8.69 3.90 3.90
(250,1000) 113.7 119.3 3.36 5.17 90.1 110.1 8.69 8.69 4.13 4.14
(500,1000) 136.8 140.3 5.65 7.64 65.7 113.9 9.38 9.38 3.80 3.80
(1000, 1000) 160.8 165.4 9.31 12.4 8.43 22.8 9.77 9.77 3.97 3.97

methods we compare against include the Upper Confidence Bound algorithm of Agrawal et al.
(2017a) (denoted as UCB), the Thompson sampling algorithm of Agrawal et al. (2017b) (denoted
as THOMPSON), and the Golden Ratio Search algorithm of Rusmevichientong et al. (2010) (de-
noted as GRS). Note that both UCB and THOMPSON proposed in Agrawal et al. (2017a,b) were
initially designed for the capacitated MNL model, in which the number of items each assortment
contains is restricted to be at most K ă N . In our experiments, we operate both the UCB and
THOMPSON algorithms under the uncapacitated setting, simply by removing the constraint set
when performing each assortment optimization.

Most hyper-parameters (such as constants in confidence bounds) are set directly using the the-
oretical values. One exception is our improved adaptive trisection algorithm (ADAP-TRISEC),

in which we replace the
b

2 lnp8{pδ`qq
`

confidence interval configuration with
b

0.1 lnp8{pδ`qq
`

. We
observe that a smaller constant value leads to better empirical performance. Another is the
GRS algorithm: in Rusmevichientong et al. (2010) the number of exploration iterations is set
to 34 lnp2Nq{β2 where β “ minj‰j1 |RpLrjq ´ RpLrj1 q|, which is inappropriate for our “gap-
free” synthetical setting in which β “ 0. Instead, we use the common choice of

?
T exploration

iterations in typical gap-independent bandit problems for GRS.

Results. In Table 4.1 we report the mean and maximum regret from 20 independent runs of
each algorithm on our synthetic data, with different settings of N (number of items) and T (time
horizon length). We observe that as the number of items (N ) becomes large, our algorithms
(TRISEC and ADAP-TRISEC) achieve smaller mean and maximum regret compared to their com-
petitors, and ADAP-TRISEC consistently outperforms TRISEC in all settings. Unlike UCB and
THOMPSON whose regret depend polynomial on N , our TRISEC and ADAP-TRISEC algorithms
have no dependency on N and hence their regret does not increase with N . Moreover, the sep-
arate exploration and exploitation structure in GRS makes its performance somewhat unstable,
which leads to a larger gap between mean and maximum regrets.
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M nests
Sedan SUV Trucks

Honda Civic

Toyota Camry

Audi A6

Figure 4.2: A simple illustration of the nested logit model with a car sales example. In this
example, 9 cars are organized into M “ 3 nests (Sedan, SUV and Trucks), and within each nest
there are N “ 3 car makes. An incoming customer would first choose a nest for purchase (if she
makes a purchase at all), and then chooses one particular make within the nest she chooses in the
first stage. The retailer has full knowledge of the nested tree structure and the profit margins for
selling each item, but will need to learn the utility parameters of the nests and items.

4.2 The nested multinomial logit model

In a nested multinomial logit model (Train, 2009, Chapter 9), items are organized into nests,
as depicted in Figure 4.2. We use rM s “ t1, 2, ¨ ¨ ¨ ,Mu to denote M nests. For each nest
i P rM s, denote the items in nest i by rNis “ t1, 2, ¨ ¨ ¨ , Niu. Each item j P rNis is associated
with a known revenue parameter rij and an unknown mean utility parameter vij . Without loss
of generality, we assume each nest has an equal number of items, i.e., N1 “ ¨ ¨ ¨ “ NM “ N ,
because one can always add items with zero utility and revenue parameters. Let Si “ 2rNs be
the set of all possible assortments for nest i. Further, let tγiuiPrMs Ď r0, 1s be a collection of
unknown correlation parameters for different nests. Each parameter γi is a measure of the degree
of independence among the items in nest i: a larger value of γi indicates less correlation (see
Chapter 4 of Train (2009)).

At each time period t P t1, 2, ¨ ¨ ¨ , T u, the retailer offers the arriving customer an assortment
S
ptq
i P Si for every nest i P rM s, conveniently denoted as Sptq “ pS

ptq
1 , ¨ ¨ ¨ , S

ptq
M q. The retailer

then observes a nest-level purchase option it P rM s Y t0u. If it P rM s, an item jt P rN s is
purchased within the nest it. On the other hand, it “ 0 means no purchase occurs at time t. The
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probabilistic model for the purchasing option pit, jtq can be formulated below:

Pr
“

it “ i|Sptq
‰

“
VipS

ptq
i q

γi

V0 `
řM
i1“1 Vi1pS

ptq
i1 q

γi1
, where V0 ” 1, VipS

ptq
i q “

ÿ

jPS
ptq
i

vij for i P rM s;

(4.11)
Pr

“

jt “ j|it “ i, Sptq
‰

“
vij

ř

j1PS
ptq
i
vij1

for i P rM s, j P S
ptq
i . (4.12)

Note that when γi “ 1 for all i P rM s, the nested logit model reduces to the standard MNL
model.

The retailer then collects revenue rit,jt provided that it ‰ 0. The expected revenue RpSptqq
given the assortment combination Sptq can then be written as

RpSptqq “

M
ÿ

i“1

Pr
“

it “ i|Sptq
‰

ÿ

jPS
ptq
i

rij Pr
“

jt “ j|it “ i, Sptq
‰

“

řM
i“1RipS

ptq
i qVipS

ptq
i q

γi

1`
řM
i“1 VipS

ptq
i q

γi
; where RipS

ptq
i q “

ř

jPS
ptq
i
rijvij

ř

jPS
ptq
i
vij

. (4.13)

The objective of the seller to minimize expected (accumulated) regret, which is defined as fol-
lows:

RegretptSptquTt“1q :“
T
ÿ

t“1

R˚ ´ Eπ
“

RpSptqq
‰

, where R˚ “ max
SPS“S1ˆ¨¨¨ˆSM

RpSq. (4.14)

Throughout this section, we make the following boundedness assumptions on revenue and
utility parameters:

(A1) 0 ď rij ď 1 for all i P rM s and j P rN s.

(A2) 0 ă vij ď CV for all i P rM s and j P rN s with some constant CV ě 1.
The first boundedness assumption on revenue parameters is standard in the literature (see e.g.,
Theorem 1 in Agrawal et al. (2017a)). It is also worthwhile noting that assumption (A2) is
different from and weaker than the common assumption that no purchase (with V0 “ 1) is the
most frequent outcome (see e.g., Agrawal et al. (2017a,b)).

4.2.1 Assortment space reductions
For nested logit models, the complete assortment selection space (a.k.a. action space) S “

S1ˆS2ˆ¨ ¨ ¨ ˆSM is extremely large, consisting of an exponential number of candidate assortment
selections (on the order of p2NqM ). Existing bandit learning approaches treating each assortment
set in S independently would easily incur a regret also exponentially large. It is thus mandatory
to reduce the number of candidate assortment sets in S.

Fortunately, existing results on the structure of optimal S show that it suffices to consider
level sets Lipθiq :“ tj P rN s : rij ě θiu for each nest i. In other words, Lipθiq is the set
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of products in nest i with revenue larger than or equal to a given threshold θi ě 0. Define
Pi :“ tLipθiq : θi ě 0u Ď Si to be all the possible level sets of Si and let

P :“ P1 ˆ P2 ˆ ¨ ¨ ¨ ˆ PM Ď S. (4.15)

The following lemma from Davis et al. (2014) and Li et al. (2015) shows that one can restrict
the assortment selections to P without loss of any optimality in terms of expected revenue.
Lemma 56 (Davis et al. (2014); Li et al. (2015)). There exists level set threshold parameters
pθ˚1 , . . . , θ

˚
Mq and S˚ “ pL1pθ

˚
1 q, ¨ ¨ ¨ ,LMpθ˚Mqq P P such that the following hold:

1. RpS˚q “ maxSPSRpSq “ R˚;
2. θ˚i ě γiR

˚ ` p1´ γiqRipS
˚
i q for all i P rM s, where S˚i “ Lipθ˚i q.

The first item in Lemma 56 is an important structural result showing that the optimal assort-
ments are “revenue-ordered” within each nest. The second item is a technical result, which will
be used in the proof. Compared to the original action space S, the reduced “level set” space P is
much smaller, with each Pi consisting of N instead of 2N assortment candidates.

4.2.2 A nested singleton model
To facilitate the illustration of our idea, we introduce a “singleton” description of the original
nested model which we name nested singleton models. In our singleton model, we treat each
level set as a “singleton item” in the nested model with an aggregate random revenue (which
corresponds to the nest-level revenue in (4.13)). The introduced “nested singleton model” not
only helps simplify our algorithms’ descriptions and their analysis but also highlights our main
idea of “aggregated estimation” on a nested level. Moreover, this nested singleton model will
provide a unified description of a more sophisticated policy based on a discretization technique,
which will be introduced later.

Recall that for each nest i P rM s, there will be only pN ` 1q distinct level sets tLipθiq :
i P rN su Y tLip8qu, where Lip8q “ H corresponds to the empty assortment set. To simplify
the problem, we shall consider each level set as a singleton item, associated with a preference
parameter and a mean revenue parameter. More specifically, each nest i P rM s consists of N ` 1
“singleton items”, each labeled as θ P Ki :“ trij : j P rN suY t8u, where the singleton θ in nest
i corresponds to the assortment level set Lipθq. It should also be noted that θ “ 8 corresponds to
the empty assortment. With this notation, each assortment combination S “ pS1, ¨ ¨ ¨ , SMq P P
can be equivalently written as

θ “ pθ1, ¨ ¨ ¨ , θMq P K1 ˆ ¨ ¨ ¨ ˆKM . (4.16)

Here θi P Ki corresponds to level set Si “ Lipθiq “ tj P rN s : rij ě θiu being offered in nest i.
When necessary, we will also write Sipθiq to emphasize that the assortment in nest i depends on
the singleton θi.

After presenting the customer with assortment combination S P P (or equivalently param-
eterized by θ), the retailer observes it P rM s Y t0u indicating which nest is chosen (it “ 0
means no purchase is made at time t) and collects revenue rt P r0, 1s, which is a random variable
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corresponding to the revenue rit,jt of item jt in nest it (if it “ 0, then rt “ 0 almost surely).
In the nested singleton model, we discard the item choice jt within nest it, and only record the
nest-level selection it and revenue collected rt.

For any i P rM s and θi P Ki, we define ui,θi :“ VipSipθiqq
γi and φi,θ :“ RipSipθiqq, where

VipSipθiqq and RipSipθiqq are nest-level utility parameter and expected revenue associated with
the level set Sipθiq “ Lipθiq (see definitions of Vi and Ri in Eq (4.11) and (4.13), respectively).
Given an assortment combination θptq “ pθ1, ¨ ¨ ¨ , θMq at time epoch t, it is easy to verify that
the random choice it P rM s Y t0u, and corresponding random revenue rt P r0, 1s satisfy the
following:

Prrit “ i|θptqs “
ui,θi

1`
řM
i1“1 ui1,θi1

; Errt|it “ is “ φi,θi ; rt “ 0 a.s. if it “ 0. (4.17)

In fact, Eq. (4.17) resembles the classical plain MNL model, with two important differences.
First, the revenues collected on each purchased singleton it are random instead of fixed, and the
mean revenue parameters tφi,θu are unknown and have to be estimated from random revenues
collected from purchasing events. Second, it is constrained in that at most one singleton θi P Ki
can be offered within each nest i P rM s, where in the classical plain MNL model with capacity
constraints, any M items can be combined as an assortment.

Define the expected revenue for an assortment combination θptq as,

R1pθptqq :“
M
ÿ

i“1

Prrit “ i|θptqs ¨ Errt|it “ is “

řM
i“1 φi,θiui,θi

1`
řM
i“1 ui,θi

.

The objective is to minimize the regret:

RegretptθptquTt“1q :“ E
T
ÿ

t“1

R1pθ˚q ´R1pθptqq where R1pθ˚q “ max
θPK1ˆ¨¨¨ˆKM

R1pθq. (4.18)

By our assumptions (A1) and (A2), it is easy to verify that φi,θi P r0, 1s and ui,θi P r0, pNCV q
γis Ď

r0, NCV s for all i P rM s and θi P Ki. We also note that pNCV qγi ď NCV , since γi P r0, 1s and
CV ě 1.

For a given dynamic assortment selection policy π1 under this nested singleton model, it is
easy to construct a policy π under the original nested logit model simply by converting tθptqu to
their corresponding assortment combinations tSptqu. Please see Algorithm 10 and the following
Proposition 16 for more details.
Proposition 16. Suppose there exists a policy π1 that attains a regret of at most ∆ on any instance
of the nested singleton model with |Ki| “ K “ N ` 1 for all i P rM s and ui,θi P r0, U s with
U ď NCV for all i P rM s and θi P Ki. Then there is a meta-policy π (see Algorithm 10) that
produces an assortment combination sequence tSptquTt“1 under the original nested choice model
with regret (defined in Eq. (4.14)) at most ∆.

Proposition 16 is a simple consequence of Lemma 56 and we omit its proof.
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Algorithm 10 The meta-policy π built upon policy π1 under the nested singleton model.

1: Input: a dynamic assortment planning policy π1 under the nested singleton model.
2: Output: a dynamic assortment planning policy π for the original nested logit model.
3: for t “ 1, 2, ¨ ¨ ¨ , T do
4: Let θptq “ pθptq1 , ¨ ¨ ¨ , θ

ptq
M q P K1 ˆ ¨ ¨ ¨ ˆKM be the output of π1;

5: Produce assortment combination Sptq “ pSptq1 , ¨ ¨ ¨ , S
ptq
M q, where Sptqi “ Lipθptqi q;

6: Observe the nest-selection it P rM s Y t0u and revenue rt, and pass it, rt to policy π1;
7: end for

4.2.3 UCB-based dynamic assortment planning policies

We design dynamic planning policies under the nested logit model using an upper-confidence-
bound (UCB) approach. We focus entirely on the simpler assortment model specified in Eq. (4.17),
since it is (approximately) equivalent to the original nested logit model as shown in Proposition
16.

Our main policy is based on the idea of UCB from classical bandit algorithms (Bubeck &
Cesa-Bianchi, 2012) and repeated exploration of the same action until no-purchase happens,
which was found to be very useful for assortment planning problems (Agrawal et al., 2017a)
because it provides unbiased estimates of model parameters.

The pseudo-code of our proposed policy is given in Algorithm 11. We first explain a few
notations used in the algorithm and then describe the details of the algorithm.

- Eτ : all iterations in epoch τ where the same assortment combination θ is provided. Each
epoch (corresponding to Steps 7-9 in Algorithm 11) terminates whenever the no-purchase
action is observed. In other words, one and only one “no-purchase” action it “ 0 appears
at the last iteration of each epoch Eτ .

- T pi, θq: the indices of epochs in which θ P Ki is supplied in nest i; T pi, θq “ |T pi, θq|
denotes the cardinality of T pi, θq;

- pni,τ : the number of iterations in the epoch τ (i.e., Eτ ) in which an item in nest i is pur-
chased;

- pri,τ : the total revenue collected for all iterations in Eτ in which an item in nest i is pur-
chased;

- pui,θ, pφi,θ, ui,θ, φi,θ: estimates of ui,θ, φi,θ, and their upper confidence bands.
The high-level idea of Algorithm 11 can be described as follows. The algorithm operates

in “epochs” E1, E2, ¨ ¨ ¨ . For all iterations in each epoch Eτ , the same assortment combination
θ “ pθ1, ¨ ¨ ¨ , θMq are offered and customers’ purchasing actions are observed. The θ offered
in each epoch Eτ is computed by maximizing upper confidence bands of expected regrets over
all assortments. An epoch terminates whenever a “no-purchase” action is made by the arriving
customer. This epoch-based strategy (i.e., offering the same assortment until no-purchase is
observed) was first introduced by Agrawal et al. (2017a) and enjoys the favorable properties
stated in the next lemma.
Lemma 57. For each epoch Eτ and nest i P rM s, let pθi P Ki be the singleton provided in
nest i. The expectations of the number of iterations and total revenues collected in which nest
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Algorithm 11 The upper confidence bound (UCB) policy for dynamic assortment planning under
the nested singleton model in Eq. (4.17).

1: Input: singleton sets K1, ¨ ¨ ¨ ,KM , upper bound U on tui,θu, time horizon T .
2: Output: assortment sequences θp1q, ¨ ¨ ¨ , θpT q P K1 ˆ ¨ ¨ ¨ ˆKM .
3: Initialization: τ “ 1, tEτu8τ“1 “ H, t “ 1; for every i P rM s and θ P Ki, set T pi, θq “ H,
T pi, θq “ 0, pφi,θ “ φi,θ “ 1, pui,θ “ ui,θ “ U ; for all i P rM s and θ P Ki corresponding to
the empty assortment (i.e., Lipθq “ H), set φi,θ “ φi,θ “ ui,θ “ ui,θ “ 0;

4: while t ď T do
5: pθpτq “ pθ Ð arg maxθPK1ˆ¨¨¨ˆKM R

1
pθq, where R

1
pθq “ r

řM
i“1 φi,θiui,θis{r1`

řM
i“1 ui,θis

6: Ź This optimization problem can be solved in polynomial time; see Sec. 4.2.3;
7: repeat
8: Pick θptq “ pθ and observe it, rt in Eq. (4.17) and update Eτ Ð Eτ Y ttu, t “ t` 1;
9: until it´1 “ 0 or t ą T

10: for each i P rM s do
11: Compute pni,τ “

ř

t1PEτ Irit1 “ is and pri,τ “
ř

t1PEτ rt1Irit1 “ is;
12: Let θ “ pθi and update: T pi, θq Ð T pi, θq Y tτu, T pi, θq Ð T pi, θq ` 1;
13: Update the utility and mean revenue estimates and their associated confidence bands:

pui,θ “
1

T pi,θq

ř

τ 1PT pi,θq pni,τ 1 ,
pφi,θ “

ř

τ 1PT pi,θq pri,τ 1
ř

τ 1PT pi,θqpn
i,τ 1

;

14: if T pi, θq ě 96 lnp2MTKq then

15: ui,θ “ mintU, pui,θ `

c

96 maxppui,θ,pu
2
i,θq lnp2MTKq

T pi,θq `
144 lnp2MTKq

T pi,θq u,

16: φi,θ “ mint1, pφi,θ `
b

lnp2MTKq
T pi,θqpui,θ

u;

17: else
18: ui,θ “ U, φi,θ “ 1.
19: end if
20: end for
21: τ Ð τ ` 1;
22: end while

i is purchased (denoted by pni,τ and pri,τ , respectively, in Algorithm 11) satisfies the following
regardless of the other offered assortments pθi1 for i1 ‰ i:

1. Erpni,τ s “ ui,pθi;
2. Erpri,τ |pni,τ s “ pni,τφi,pθi .

Proof. Simple calculations show that (see for example Corollary A.1 of Agrawal et al. (2017a))

Pr rpni,τ “ ks “

˜

ui,pθi
1` ui,pθi

¸k˜

1

1` ui,pθi

¸

for k “ 0, 1, 2, ¨ ¨ ¨ (4.19)

That is, pni,τ is a geometric random variable with parameter 1{p1 ` ui,pθiq. Hence, pni,τ is an
unbiased estimator of ui,pθi , meaning that Epni,τ “ ui,τ .
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The distribution and expectation of pri,τ can be similarly derived, using the property that
Erpri,τ |it “ is “ φi,pθi .

The above properties motivate intuitive parameter estimators pui,θ, pφi,θ of ui,θ and φi,θ for
θ “ pθi, which are taken to be the sample averages of pni,τ and pri,τ over all epochs Eτ in which the
item pθi in nest i is offered. It is worth noting that in those epochs, the offered singletons in nests
other than the i-th nest (i.e., the nests i1 for i1 ‰ i) can be arbitrary since the distributions of pni,τ
and pri,τ are independent of pθi1 for i1 ‰ i. This key independence property enables us to combine
purchasing information of vastly different assortment combinations (provided that pθi remains the
same), which forms an important aggregation strategy that avoids exponentially large regret if
assortment combinations are treated independently.

Efficient computation of pθ

Our policy in Algorithm 11 involves a combinatorial optimization problem over all θ P K1 ˆ

¨ ¨ ¨ ˆKM (see Step 5 in Algorithm 11). A brute-force algorithm that enumerates all such θ takes
OpKMq time and is computationally intractable even for small M values. In this section we
introduce a computationally efficient procedure to compute pθ by using a binary search technique.
The idea behind our procedure is similar to the one (Rusmevichientong et al., 2010) introduced
for dynamic assortment optimization in capacitated MNL models.

For any λ P r0, 1s and θ “ pθ1, ¨ ¨ ¨ , θMq P K1 ˆ ¨ ¨ ¨ ˆKM define potential function

ψλpθq :“
M
ÿ

i“1

pφi,θi ´ λqui,θi . (4.20)

Recall the definition ofR
1
pθq “

řM
i“1 φi,θiui,θi

1`
řM
i“1 ui,θi

in Step 5 of Algorithm 11. The following lemma

characterizes the properties of ψλpθq and its relationship with R
˚
“ maxθPK1ˆ¨¨¨ˆKM R

1
pθq:

Lemma 58. The following holds for all λ P r0, 1s:
1. If R

˚
ě λ, then there exists a θ P K1 ˆ ¨ ¨ ¨ ˆ KM such that ψλpθq ě λ; furthermore if

R
˚
ą λ, then the inequality is strict;

2. If R
˚
ď λ, then for all θ P K1 ˆ ¨ ¨ ¨ ˆ KM , ψλpθq ď λ; furthermore if R

˚
ă λ, then the

inequalities are strict.

Proof. Let θ˚ “ pθ˚1 , ¨ ¨ ¨ , θ
˚
Mq P K1 ˆ ¨ ¨ ¨ ˆ KM be a maximizer of R

1
(i.e., R

˚
“ R

1
pθ˚q). By

definition,
řM
i“1pφi,θ˚i ´ R

˚
qui,θ˚i “ R

˚
. If R

˚
ě λ, then

řM
i“1pφi,θ˚i ´ λqui,θ˚i ě

řM
i“1pφi,θ˚i ´

R
˚
qui,θ˚i “ R

˚
ě λ. Therefore ψλpθ˚q ě λ. Furthermore, if R

˚
ą λ then the last inequality in

the chain of inequalities is strict. The first property is thus proved.
We next prove the second property. Assume by way of contradiction that there exists θ “

pθ1, ¨ ¨ ¨ , θMq P K1 ˆ ¨ ¨ ¨ ˆKM such that ψλpθq ą λ, meaning that
řM
i“1pφi,θi ´ λqui,θi ą λ. Re-

arranging terms and dividing both sides by p1`
řM
i“1 ui,θiqwe haveR

1
pθq “ r

řM
i“1 φi,θiui,θis{r1`

řM
i“1 ui,θis ą λ. This contradicts the assumption that R

˚
“ maxθPK1ˆ¨¨¨ˆKm R

1pθq ď λ. To prove
the second half of the second property, simply replace all occurrences of ą by ě.
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Based on Lemma 58, an efficient optimization algorithm computing the maximizer pθpτq can
be designed by a binary search over λ P r0, 1s. In particular, for each fixed value of λ, the
θ˚pλq “ pθ˚1 pλq, ¨ ¨ ¨ , θ

˚
Mpλqq P K1 ˆ ¨ ¨ ¨ ˆ KM that maximizes ψλpθq can be found by setting

θ˚i pλq P arg maxθiPKipφi,θi ´ λqui,θi . If ψλpθ˚pλqq ą λ, then R
˚
ą λ, because otherwise it

violates the second property in Lemma 58. Similarly, if ψλpθ˚pλqq ď λ, then R
˚
ď λ, because

otherwise it violates the second part of the first property in Lemma 58 (note that since θ˚pλq is
the maximizer of ψλpθq, ψλpθ˚pλqq ď λ implies that ψλpθq ď λ for all θ). Thus, whether R

˚
ą λ

or R
˚
ď λ can be determined by solely comparing ψλpθ˚pλqq with λ.

We remark that each evaluation of ψλpθ˚pλqq takesOpMKq time, and the entire binary search
procedure takes time OpMK logp1{εqq to approximate R

˚
up to arbitrarily small error ε. This is

much faster than the brute force algorithm that takes OpKMq time.

Regret analysis

Below is our main regret theorem for Algorithm 11.
Theorem 17. The assortment sequence tθptquTt“1 produced by Algorithm 11 has regret (defined
in Eq. (4.18)) upper bounded as

RegretptθptquTt“1q À
a

MKT logpMKT q `MKU log2
pMKT q `Op1q, (4.21)

where K “ |K| and U “ maxiPrMs maxθPKi ui,θ.
Corollary 5. IfK “ |Ki| “ N`1 (for any i P rM s) and the meta-policy in Algorithm 10 is used
to convert Algorithm 11 into a dynamic assortment planning algorithm for the original nested
model, then

RegretptSptquTt“1q À
a

MNT logpMNT q `MN2CV log2
pMNT q `Op1q

“ rOp
?
MNT `MN2

q (4.22)

We make several remarks on the regret upper bound in Corollary 5. First, when T ą M
and the number of items per nest N is small, the dominating term in Eq. (4.22) is rOp

?
MNT q.

This matches the lower bound result Ωp
?
MT q in Theorem 18 when N is a constant. When

the number of items per nest N is large compared to the time horizon T , the dominating term
in Eq. (4.22) is rOpMN2q. We will show later in Sec. 4.2.4 how regret can be improved by
considering a “discretization” approach under such large N settings.

4.2.4 Policies with an improved N dependency
Although we are not able to provide a lower bound on the dependence of N and derive an
optimal policy, we provide a class of policies based on a discretizing technique. This class of
policies generalizes our first policy since the first policy simply corresponds to a special case by
setting the discretization granularity to zero. In addition, by choosing an appropriate non-zero
discretization granularity, we obtain another policy with an improved regret dependence on N
while sacrificing the dependence on T .
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Discretizing the singleton sets

In this section, we introduce a discretization technique to further reduce the size of the level set
space Pi in (4.15) (or equivalently, Ki in the nested singleton model introduced in Sec. 4.2.2).
Instead of considering level sets defined for thresholds θ “ rij for all j P rN s so that |Ki| “
N ` 1, we only include level sets whose thresholds are on a finite grid.

More specifically, let δ P p0, 1q be a granularity parameter to be optimized later. Recall the
definition of the level set Lipθq “ tj P rN s : rij ě θu and we only consider level set threshold
parameters θ that are multiples of 1{δ. Let N be the set of non-negative integers and define

rKδi :“ tθ : 0 ď θ ď 1, θ{δ P N, Lipθq1s are distinctu Y t8u, for i P rM s (4.23)

where each θ P rKδi corresponds to a unique level set Lipθq. When there are multiple θ’s leading
to the same level set, we keep any one of these θ’s in rKδi and thus the level sets induced by rKδi
(i.e., tLipθq : θ P rKδi u) are unique. Since duplicate assortment sets are removed in rKδi , we have
rKδi Ď Ki and thus |rKδi | ď |Ki| “ K “ N ` 1. On the other hand, we also have |rKδi | ď t1{δu` 2

because level set thresholds in rKδi must be an integer multiple of δ. On one hand, when δ is not
too small, the size of rKδi could be significantly smaller than N . On the other hand, when δ Ñ 0,
we recover the original singleton set Ki, which gives the full level sets. We shall thus define
rKδi :“ Ki when δ “ 0.

The following key discretized reduction lemma shows that by restricting ourselves to rKδi
instead of Ki, the approximation error in terms of expected revenue can be upper bounded by δ,
which goes to zero as we take δ Ñ 0.
Lemma 59 (Discretized reduction lemma). Fix an arbitrary δ P p0, 1q. Then

max
θPK1ˆ¨¨¨ˆKM

R1pθq ´ max
θP rKδ1ˆ¨¨¨ˆ rKδM

R1pθq ď δ,

where R1pθq :“ r
řM
i“1 φi,θiui,θis{r1`

řM
i“1 ui,θis.

A discretization based meta-policy and regret analysis

We first present a meta-policy using the discretization technique in Algorithm 12, which connects
a dynamic assortment planning policy under the singleton nested model to the original nested
logit model. The following proposition upper bounds the regret of the proposed meta-policy, as
consequences of Lemma 59 and the fact that |rKδi | ď mintN, t1{δu ` 2u for all i P rM s and
δ P r0, 1q.
Proposition 17. Suppose there exists a policy π1 that attains a regret of at most ∆ on any instance
of the nested singleton model with |rKδi | ď mintN, t1{δu ` 2u for all i P rM s and ui,θi P r0, U s
with U ď NCV for all i P rM s and θi P rKδi . Then there is a meta-policy π (see Algorithm 12)
that produces an assortment combination sequence tSptquTt“1 under the original nested choice
model with regret (defined in Eq. (4.14)) at most ∆` δT .

We note that the extra regret δT comes from the loss of the discretization in Lemma 59.
Now for the nested singleton model, we invoke Algorithm 11 with the discretized singletons

rKδ1, ¨ ¨ ¨ , rKδM as input to construct the policy π1. Then we obtain a class of policies parameterized
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Algorithm 12 The meta-policy π built upon policy π1 and the discretization argument under the
nested singleton model.

1: Input: a dynamic assortment planning policy π1 under the nested singleton model, dis-
cretization granularity δ.

2: Output: a dynamic assortment planning policy π for the original nested logit model.
3: Construct discretized singleton sets rKδ1, ¨ ¨ ¨ , rKδM in Eq. (4.23);
4: for t “ 1, 2, ¨ ¨ ¨ , T do
5: Let θptq “ pθptq1 , ¨ ¨ ¨ , θ

ptq
M q P

rKδ1 ˆ ¨ ¨ ¨ ˆ rKδM be the output of π1;
6: Produce assortment combination Sptq “ pSptq1 , ¨ ¨ ¨ , S

ptq
M q, where Sptqi “ Lipθptqi q;

7: Observe the nest-selection it P rM s Y t0u and revenue rt, and pass it, rt to policy π1.
8: end for

by δ. By replacing K “ |Ki| in Corollary 5 with K “ |rKδi | ď mintN, t1{δu ` 2u, and combing
it with Proposition 17, we obtain the following corollary on the regret under the original nested
logit model.
Corollary 6. If the meta-policy in Algorithm 12 with discretization granularity δ is used to con-
vert Algorithm 11 into a dynamic assortment planning algorithm for the original nested model,
then

RegretptSptquTt“1q À
a

mintN, δ´1uMT logpMNT q

`mintN, δ´1
uMNCV log2

pMNT q ` δT `Op1q. (4.24)

For example, by choosing δ — T´1{3, we have RegretptSptquTt“1q “
rOp
?
MT 2{3 `MNT 1{3q.

Remark 28. In cases with many items per nest (i.e., N is large), a small value of δ is desired to
balance the terms and achieve small overall regret in Eq. (4.24). Similarly, in instances with few
items per nest (i.e., N is small), a large value of δ is desired to achieve the best overall regret.

We first note that Corollary 6 is a more general result, which includes Corollary 5 as a special
case. Indeed, when δ “ 0 (mintN, δ´1u “ N ), then rKδi “ Ki and Eq. (4.24) automatically
reduces to Eq. (4.22), which upper bounds the regret of our UCB policy without discretization.
On the other hand, when N is large compared with T , it is beneficial to set the discretization
granularity parameter δ to be a non-zero value. In particular, by setting δ — T´1{3, we obtain
a regret upper bound of rOp

?
MT 2{3 ` MNT 1{3q, which is smaller than the regret bound in

Corollary 5 whenever N ą T 1{3. (Note that when N ą T 1{3, the dominating term in Corollary 5
is rOpMN2q.)

4.2.5 A regret lower bound

We establish the following lower bound on the regret of any dynamic assortment planning policy
under nested logit models.
Theorem 18. Suppose the number of nests M is divisible by 4 and γ1 “ ¨ ¨ ¨ “ γM “ 0.5.
Assume also that (A1) and (A2) hold. Then there exists a numerical constant C0 ą 0 such that
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Figure 4.3: Accumulated regret of our policy with M “ 5 nests, varying the number of items per
nest N and the granularity parameter δ.

for any dynamic assortment planning policy π,

sup
trij ,viju

T
ÿ

t“1

R˚ ´ Eπ
“

RpSptqq
‰

ě C0

?
MT where R˚ “ max

SPS
RpSq. (4.25)

We note the condition that M is divisible by 4 is only a technical condition and does not
affect the main message delivered in Theorem 18, which shows necessary dependency on M
asymptotically when M is large. Our lower bound construction treats N as a constant. In par-
ticular, in our constructions of adversarial model parameters trij, viju

M,N
i,j“1, each nest consists of

N “ 3 items. Since N is a constant, Eq. (4.25) cannot possibly be tight in terms of dependence
on N . The optimal dependence on N is a technically very challenging problem and we leave it
as an open problem.

4.2.6 Numerical results

We present numerical studies of our proposed policies for dynamic nested assortment planning
on synthetic data. The main focus of our simulation is the regret of our policies under various
model parameter settings of M , N , and T , as well as the effect of the discretization granularity
δ P r0, 1s on the regret.

For each nest i P rM s, we generate the revenue parameters trijuNj“1 independently and iden-
tically from the uniform distribution on r0.2, 0.8s and the preference parameters tvijuNj“1 inde-
pendently and identically from the uniform distribution on r10{NpM´1q, 20{NpM´1qs, where
N is the number of items in each nest. The nest discounting parameters tγiuMi“1 are generated
independently and identically from the uniform distribution on r0.5, 1s.

We consider the different combinations of parameters in terms of M (i.e., the number of
nests), N (i.e., the number of items per nest), T (i.e., time horizon length), and δ (i.e., the gran-
ularity parameter in the discretized policy). We note that δ “ 0 means that no discretization
is carried out, which corresponds to the policy in Algorithms 10 and 11. For each pM,Nq set-
tings, we generate model parameters trij, vij, γiu

M,N
i,j“1 as described in the previous paragraph, and

then run the dynamic assortment policy for 100 independent trials. The median and maximum
accumulated regret over T periods are reported.
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Table 4.2: Median (MED) and Maximum (MAX) accumulated regret (summation over T periods)
under various model and parameter settings. The minimum regret for each case is highlighted
using the bold font.

δ “ 0 δ “ 10´3 δ “ 5ˆ 10´3 δ “ 10´2 δ “ 5ˆ 10´2

pM,Nq MED MAX MED MAX MED MAX MED MAX MED MAX

T “ 100:
(5,100) 5.5 6.4 5.5 6.0 3.8 4.1 3.2 4.3 5.4 8.5
(10,100) 4.8 6.2 5.4 5.5 4.7 6.5 2.3 3.9 5.8 7.0
(5,250) 10.4 14.1 9.8 12.0 5.7 6.5 3.3 3.4 7.0 8.3
(10,250) 10.8 12.0 9.7 12.3 5.5 7.4 3.0 4.4 5.1 8.7
(5,1000) 22.0 25.3 16.0 18.2 6.2 7.5 3.2 5.0 6.9 10.9
(10,1000) 21.5 24.1 15.1 17.7 5.1 6.4 3.1 4.9 6.2 9.4

T “ 500:
(5,100) 14.3 18.5 18.3 22.6 26.8 30.9 31.9 35.3 33.3 34.3
(10,100) 15.7 23.0 16.5 22.1 28.4 28.9 35.4 36.5 35.0 36.5
(5,250) 14.2 17.3 12.7 14.9 16.4 18.4 29.1 36.8 32.6 34.2
(10,250) 13.8 15.9 13.0 17.4 16.6 19.6 29.2 35.0 35.8 38.6
(5,1000) 41.1 46.1 22.7 25.7 14.1 17.3 29.4 37.4 33.0 35.8
(10,1000) 39.3 44.2 21.0 27.2 13.7 18.7 28.0 37.0 35.7 41.5

T “ 10000:
(5,100) 491.5 505.5 489.4 496.5 494.5 500.8 503.1 511.8 513.4 525.2
(10,100) 548.4 558.0 548.6 552.9 529.3 534.7 538.2 544.3 554.3 565.2
(5,250) 534.4 543.7 529.7 543.9 523.4 536.1 519.7 525.5 526.1 532.2
(10,250) 551.0 560.5 554.5 563.3 547.4 555.2 548.6 555.1 571.6 578.4
(5,1000) 669.0 704.4 570.5 584.8 538.8 552.7 532.9 541.3 535.8 558.4
(10,1000) 703.5 738.2 613.1 633.6 555.7 566.3 549.9 559.5 567.2 578.6
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In Table 4.2, we compare the accumulated regret of our proposed policies with different
granularity parameters δ, under a range of different parameter settings of number of nests M ,
number of items per nest N , and time horizon T . In Figure 4.3, we further plot the accumulated
regret of our policies for time horizon when T is large (T between 105 and 107). From both
Table 4.2 and Figure 4.3, one can see a clear pattern of sub-linear accumulated regret. Moreover,
when N is small as compared to T , a smaller discretization granularity leads to better empirical
performance; while when N is large, a larger discretization granularity is better.

4.3 The linear contextual logit model
While many discrete choice models associate each item for sale with a single utility parameter
vi, in many practical scenarios additional contextual information is available, such as their color,
brand, size, texture, as well as customers’ evolving demands. The objective of this section is to
develop principled dynamic assortment recommendation methods incorporating such contextual
information of items.

We assume that there are N items, conveniently labeled as 1, 2, ¨ ¨ ¨ , N . At each time t, a
set of time-sensitive “feature vectors” vt1, vt2, ¨ ¨ ¨ , vtN P Rd and revenues rt1, ¨ ¨ ¨ , rtN P r0, 1s
are observed, reflecting time-varying changes of items’ revenues and customers’ preferences.
A retailer, based on the features tvtiuNi“1 and previous purchasing actions, picks an assortment
St Ď rN s under the cardinality constraint |St| ď K to present to an incoming customer; the
retailer then observes a purchasing action it P St Y t0u and collects the associated revenue rit of
the purchased item (if it “ 0 then no item is purchased and zero revenue is collected).

We use an MNL model with features to characterize how a customer makes choices. Let
θ0 P Rd be an unknown time-invariant coefficient. For any S Ď rN s, the choice model pθ0,tp¨|Sq
is specified as (let r0 “ 0 and vt0 “ 0)

pθ0,tpj|Sq “
exptvJtjθ0u

1`
ř

kPS exptvJtkθ0u
@j P S Y t0u. (4.26)

For simplicity, in the rest of the paper we use pθ,tp¨|Sq to denote the law of the purchased item
it conditioned on given assortment S at time t, parameterized by the coefficient θ P Rd. The
expected revenue RtpSq of assortment S Ď rN s at time t is then given by

RtpSq :“ Eθ0,trrtj|Ss “
ř

jPS rtj exptvJtjθ0u

1`
ř

jPS exptvJtjθ0u
. (4.27)

Note that throughout the paper, we use Eθ0,tr¨|Ss to denote the expectation with respect to the
choice probabilities pθ0,tpj|Sq defined in Eq. (4.26).

Our objective is to design policy π such that the regret

RegretptStu
T
t“1q “ Eπ

T
ÿ

t“1

RtpS
˚
t q ´RtpStq where S˚t “ arg max

SĎrNs,|S|ďK
RtpSq (4.28)

is minimized. Here, S˚t is an optimal assortment chosen when the full knowledge of choice
probabilities is available (i.e., θ0 is known).
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Algorithm 13 The MLE-UCB policy for dynamic assortment optimization
1: Input: Number of pure explorations T0, constraint radius τ .
2: Output: Assortment selections tStuTt“1 Ď rN s satisfying |St| ď K.
3: Pure exploration: for t “ 1, ¨ ¨ ¨ , T0, pick St “ t`tu for a single product `t sampled uniformly

at random from t1, ¨ ¨ ¨ , Nu and record purchasing actions pi1, ¨ ¨ ¨ , iT0q;
4: Compute a pilot estimator using global MLE: θ˚ P arg maxθPRd

řT0
t1“1 log pθ,tpit1 |St1q;

5: for t “ T0 ` 1 to T do
6: Observe revenue parameters trtjuNj“1 and preference features tvtjuNj“1 at time t;
7: Compute local MLE pθt´1 P arg max}θ´θ˚}2ďτ

řt´1
t1“1 log pθ,tpit1 |St1q;

8: For every assortment S Ď rN s, |S| ď K, compute its upper confidence bound

RtpSq :“ E
pθt´1,t

rrtj|Ss `min

"

1, ω

b

}pI
´1{2
t´1 p

pθt´1qxMtp
pθt´1|SqpI

´1{2
t´1 p

pθt´1q}op

*

;

pIt´1pθq :“
t´1
ÿ

t1“1

xMt1pθ|St1q; xMtpθ|Sq :“ Eθ,trvtjvJtj|Ss ´ tEθ,trvtj|SsutEθ,trvtj|SsuJ;

ω —
a

d logpρνTKq;

9: Pick St P arg maxSĎrNs,|S|ďK RtpSq and observe purchasing action it P St Y t0u;
10: end for

Remark: the expectations admit the following closed-form expressions:
Eθ,trrtj|Ss “

ř

jPS pθ,tpj|Sqrtj “
ř

jPS rtj exptvJtjθu

1`
ř

jPS exptvJtjθu
;

Eθ,trvtj|Ss “
ř

jPS pθ,tpj|Sqvtj “
ř

jPS vtj exptvJtjθu

1`
ř

jPS exptvJtjθu
;

Eθ,trvtjvJtj|Ss “
ř

jPS pθ,tpj|Sqvtjv
J
tj “

ř

jPS vtjv
J
tj exptvJtjθu

1`
ř

jPS exptvJtjθu
.

4.3.1 An MLE-UCB policy and its regret

We propose an MLE-UCB policy, described in Algorithm 13.
The policy can be roughly divided into two phases. In the first pure exploration phase, the

policy selects assortments uniformly at random, consisting of only one item. The objective of
the pure exploration is to establish a “pilot” estimator of the unknown coefficient θ0, i.e., a good
initial estimator for θ0. For the simplicity of the analysis, we choose one item for each assortment
in this phase, which facilitates us to adapt existing analysis in the works of Filippi et al. (2010);
Li et al. (2017b) as the MNL-logit choice model reduces to a generalized linear model when
only one item is present in the assortment. In the second phase, we use a UCB-type approach
that selects St as the assortment maximizing an upper bound RtpStq of the expected revenue
RtpStq. Such upper bounds are built using a local Maximum Likelihood Estimation (MLE) of
θ0. In particular, in Step 5, instead of computing an MLE, we compute a local MLE, where the
estimator pθt´1 lies in a ball centered at the pilot estimator θ˚ with a radius τ . This localization also
simplifies the technical analysis based on Taylor expansion, which benefits from the constraint
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that pθt´1 is not too far away from θ˚.
To construct the confidence bound, we introduce the matrices xMtp

pθt´1|Sq and pIt´1p
pθt´1q

in Step 6 of Algorithm 13, which are empirical estimates of the Fisher’s information matrices
´Er∇2

θ log pp¨|θqs corresponding to the MNL choice model pp¨|Stq. The population version of
the Fisher’s information matrices are presented in Eq. (??). These quantities play an essential
role in classical statistical analysis of maximum likelihood estimators (see, e.g., (Van der Vaart,
1998)).

The proposed MLE-UCB policy has three hyper-parameters: the coefficient ω ą 0 that
controls the lengths of confidence intervals of RtpSq, the number of pure exploration iterations
T0, and the radius τ0 in the local MLE formulation. While theoretical values of ω, T0 and τ
are given in Theorem 19, which potentially depend on several unknown problem parameters, in
practice we recommend the usage of T0 “ maxtd log T, T 1{4u, ω “

?
d log T and τ “ 1{K.

To establish rigorous regret upper bounds on Algorithm 13, we impose the following assump-
tions:

(A1) There exists a constant ν such that }vtj}2 ď ν for all t and j. Moreover, for all t ď T0

and j P rN s, vtj are i.i.d. generated from an unknown distribution with the density µ
satisfying that λminpEµvvJq ě λ0 for some constant λ0 ą 0;

(A2) There exists a constant ρ ă 8 such that for all t P rT s and S Ď rN s with |S| ď K,
pθ0,tpj|Sq

pθ0,tpj
1|Sq

ď ρ for all j, j1 P S Y t0u.

The item (A1) assumes that the contextual information vectors tvtju in the pure-exploration
phase with t ď T0 are randomly generated from a non-degenerate density. It also places a stan-
dard boundedness condition on tvtju for all time periods t. Note that after the pure-exploration
phase, we allow the contextual vectors tvtju to be adversarially chosen, only subject to bounded-
ness conditions. (A2) additionally assumes a bounded ratio between the probability of choosing
any two different items in an arbitrary assortment set. We remark that if }θ0}2 ď C, then the
boundedness assumption in (A1) implies (A2) with ρ ď e2 maxt1,Cνu.

We are now ready to state our main result that upper bounds the worst-case accumulated
regret of the proposed MLE-UCB policy in Algorithm 13.
Theorem 19. Suppose that T0 — maxtν2d log T {λ2

0, ρ
2pd`log T q{pτ 2λ0qu and τ — 1{

a

ρ2ν2K2

in Algorithm 13, then the regret of the MLE-UCB policy is upper bounded by

C1

”

d
?
T ¨ logpλ´1

0 ρνTKq ` d2λ´2
0 ρ4ν2K2 log T

ı

` C2, (4.29)

where C1, C2 ą 0 are universal constants.
In addition to universal constants, the regret upper bound established in Theorem 19 has

two terms. The first term, d
?
T ¨ logpλ´1

0 ρνTKq, is the main regret term that scales as rOpd
?
T q

dropping logarithmic dependency. The second d2λ´2
0 ρ4ν2K2 log T term is a minor term, because

it only scales logarithmically with the time horizon T . One remarkable aspect of Theorem 19 is
the fact that the regret upper bound has no dependency on the total number of items N (even in
a logarithmic term). This is an attractive property of the proposed policy, which allows N to be
very large, even exponentially large in d and K.

While the computational task in Step 8 is quite challenging, approximation algorithms can be
developed with rigorous performance guarantees. Interested readers should refer to (Chen et al.,
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2018b, Sec. 5) for further details.

4.3.2 A regret lower bound
To complement our regret analysis in the previous section, in this section we prove a lower bound
for worst-case regret. Our lower bound is information theoretical, and therefore applies to any
policy for dynamic assortment optimization with changing contextual features.
Theorem 20. Suppose d is divisible by 4. There exists a universal constant C0 ą 0 such that for
any sufficiently large T and policy π, there is a worst-case problem instance with N — K ¨ 2d

items and uniformly bounded feature and coefficient vector (i.e., }vti}2 ď 1 and }θ0}2 ď 1 for all
i P rN s, t P rT s) such that the regret of π is lower bounded by C2 ¨ d

?
T {K.

Theorem 20 essentially implies that the rOpd
?
T q regret upper bound established in Theorem

19 is tight (up to logarithmic factors) in T and d. Although there is an OpKq gap between the
upper and lower regret bounds, in practical applications K is usually small and can be generally
regarded as a constant. It is an interesting technical open problem to close this gap of OpKq.

We also remark that an Ωpd
?
T q lower bound was established in the works of Dani et al.

(2008) for contextual linear bandit problems. However, in assortment selection, the reward func-
tion is not coordinate-wise decomposable, making techniques in the works of Dani et al. (2008)
not directly applicable.

4.3.3 Numerical results
In this section, we present numerical results of our proposed MLE-UCB algorithm. We use the
greedy swapping heuristics (proposed in (Chen et al., 2018b, Algorithm 4)) as the subroutine to
solve the combinatorial optimization problem in Step 8 of Algorithm 13.

Experiment setup. The unknown model parameter θ0 P Rd is generated as a uniformly ran-
dom unit d-dimensional vector. The revenue parameters trtju for j P rN s are independently
and identically generated from the uniform distribution r0.5, 0.8s. For the feature vectors tvtju,
each of them is independently generated as a uniform random vector v such that }v} “ 2 and
vJθ0 ă ´0.6. Here we set an upper bound of´0.6 for the inner product so that the utility param-
eters utj “ exptvJtjθ0u are upper bounded by expp´0.6q « 0.55. We set such an upper bound
because if the utility parameters are uniformly large, the optimal assortment is likely to pick very
few items, leading to degenerated problem instances. In the implementation of our MLE-UCB
algorithm, we simply set T0 “ t

?
T u and ω “

a

d lnpTKq.

Performance of the MLE-UCB algorithm. In Figure 4.4a we plot the average regret (i.e.
regret{T ) of MLE-UCB algorithm with N “ 1000, K “ 10, d “ 5 for the first T “ 10000 time
periods. For each experiment (in both Figure 4.4a and other figures), we repeat the experiment
for 100 times and report the average value. In Figure 4.4b we compare our algorithm with
the UCB algorithm for multinomial logit bandit (MNL-UCB) from the works of Agrawal et al.
(2017a) without utilizing the feature information. Since the MNL-UCB algorithm assumes fixed
item utilities that do not change over time, in this experiment we randomly generate one feature
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(a) Average regret of MLE-UCB (b) Comparison of MLE-UCB and MNL-UCB

Figure 4.4: Illustration of the performance of MLE-UCB.

Figure 4.5: Average regret of MLE-UCB for
various d’s.

Figure 4.6: Average regret of MLE-UCB for
various N ’s.

vector for each of the N “ 1000 items and this feature vector will be fixed for the entire time
span. We can observe that our MLE-UCB algorithm performs much better than MNL-UCB,
which suggests the importance of taking the advantage of the contextual information.

Impact of the dimension size d. We study how the dimension of the feature vector impacts
the performance of our MLE-UCB algorithm. We fix N “ 1000 and K “ 10 and test our
algorithm for dimension sizes in 5, 7, 9, 11, . . . , 25. In Figure 4.5, we report the average regret at
times T P t4000, 6000, 8000, 10000u. We can see that the average regret increases approximately
linearly with d. This phenomenon matches the linear dependency on d of the main term of the
regret Eq. (4.29) of the MLE-UCB.
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Impact of the number of items N . We compare the performance of our MLE-UCB algorithm
for the varying number of items N . We fix K “ 10 and d “ 5, and test MLE-UCB for N P

t1000, 2000, 3000, 4000u. In Figure 4.6, we report the average regret for the first T “ 10000
time periods. We observe that the regret of the algorithm is almost not affected by a bigger N .
This confirms the fact that the regret Eq. (4.29) of MLE-UCB is totally independent of N .

4.4 Summary and related works

Assortment optimization plays a central role in revenue and recommendation management sys-
tems, with dynamic modeling and planning receiving much recent attention from the operations
research and operations management society, which combines statistical modeling and sequen-
tial decision making at the same time. In my works, my collaborators and I extend the seminal
works of Agrawal et al. (2017a); Rusmevichientong et al. (2010) by sharpening their regret up-
per bounds (Sec. 4.1), and considering more complex and practical assortment choice models
(Secs. 4.2, 4.3).

Below we summarize some major literature on the stationary and dynamic assortment opti-
mization problem. We also review relevant literature of online learning and bandit optimization.

Stationary and dynamic assortment planning Static assortment planning with known choice
behavior has been an active research area since the seminal work by Mahajan & van Ryzin
(2001); van Ryzin & Mahajan (1999). When the customer makes the choice according to the
MNL model, Gallego et al. (2004); Talluri & van Ryzin (2004) prove the the optimal assortment
will belong to revenue-ordered assortments. An alternative proof is provided in the work of
Liu & van Ryzin (2008). This important structural result enables efficient computation of static
assortment planning under the MNL model, which reduces the number of candidate assortments
from 2N to N and will also be used in our policy development.

Motivated by the large-scale online retailing, researchers start to relax the assumption on
prior knowledge of customers’ choice behavior. The question of dynamic optimization of assort-
ments has received increasing attention in both the machine learning and operations management
society Agrawal et al. (2017a,b); Caro & Gallien (2007); Rusmevichientong et al. (2010); Saure
& Zeevi (2013), where the mean utilities of products are unknown and have to be learnt on
the fly. Motivated by fast-fashion retailing, the work by Caro & Gallien (2007) was the first
to study dynamic assortment planning problem, which assumes that the demand for product is
independent of each other. The work Rusmevichientong et al. (2010) and Saure & Zeevi (2013)
incorporate choice models of MNL into dynamic assortment planning and formulate the problem
into a online regret minimization problem.

Assortment planning under nested logit models The nested logit model is considered as
“the most widely used member of the GEV (generalized extreme value) family” and “has been
applied by many researchers in a variety of situations” (see Chapter 4 from Train (2009)). It is
well known that the standard MNL suffers from the independence of irrelevant alternatives (IIA),
which implies proportional substitution across alternatives (see Chapter 4 from Train (2009)).
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Davis et al. (2014) proved an important structural result that the optimal assortment within
each nest is revenue-ordered, which will also be used in designing our dynamic policies. Assum-
ing that there are M nests and N products within each nest, Li & Rusmevichientong (2014) fur-
ther proposed an efficient greedy algorithm to find an optimal assortment set withOpNM logMq
time complexity. Kök & Xu (2011) considered the joint assortment optimization and pricing
problems with a restricted number of nests. There are several recent works on static assortment
planning under variants of nested logit models. For example, Gallego & Topaloglu (2014) stud-
ied the constrained nested logit model, Li et al. (2015) extended the popular two-level nested
logit model to a d-level nested logit model with d ě 2. In addition, there are extensive re-
search on static assortment optimization for more complex choice models, e.g., a robust version
of MNL (Rusmevichientong & Topaloglu, 2012), the mixture of logit models (Bront et al., 2009;
Méndez-Dı́az et al., 2014; Rusmevichientong et al., 2014), Markov chain-based choice models
(Blanchet et al., 2016), the generalized attraction model (Wang, 2013), Mallows-based choice
models (Désir et al., 2016), a multiple attempt model (Chung et al., 2019), and a general class of
choice models based on a distribution over permutations (Farias et al., 2013).

Assortment planning under contextual models Personalized assortment optimization has at-
tracted much research effort recently. By incorporating the feature information of each arriving
customer, both the static and dynamic assortment optimization problems are studied in the works
of Chen et al. (2015b) and Cheung & Simchi-Levi (2017), respectively. Other research studies
personalized assortment optimization in an adversarial setting rather than stochastic setting. For
example, Chen et al. (2016); Golrezaei et al. (2014) assumed that each customer’s choice behav-
ior is known, but that the customers’ arriving sequence (or customers’ types) can be adversarially
chosen and took the inventory level into consideration. Since the arriving sequence can be arbi-
trary, there is no learning component in the problem and both the works of Golrezaei et al. (2014)
and Chen et al. (2016) adopted the competitive ratio as the performance evaluation metric.

Unimodal bandits The assortment optimization problem with the plain logit model under the
uncapacitated setting is closely related to multi-armed bandit problems with unimodal constraints
(Agarwal et al., 2013; Combes & Proutiere, 2014; Cope, 2009; Yu & Mannor, 2011), in which
discrete or continuous multi-armed bandit problems are considered with additional unimodality
constraints on the means of the arms. Apart from unimodality, additional structures such as “in-
verse Lipschitz continuity” (e.g., |µpiq´µpjq| ě L|i´j| for some constant L, where µpiq denotes
the mean reward of the i-th arm) or convexity are imposed to ensure smaller regret compared to
unstructured multi-armed bandits. However, both conditions fail to hold for the revenue poten-
tial function arising from uncapacitated MNL-based assortment planning problems. In addition,
under the gap-free setting where an Op

?
T q regret is to be expected, most previous works have

additional log T terms in their regret upper bounds (except for the work of Cope (2009) which
introduces additional strong regularity conditions on the underlying functions). In the work
of Cohen-Addad & Kanade (2017), a more general problem of optimizing piecewise-constant
function is considered, without assuming a unimodal structure of the function. Consequently, a
weaker rOpT 2{3q regret is derived.
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Contextual bandits The assortment optimization problem with linear contextual modeling is
related to the contextual bandit problem in the bandit online learning literature, and is particularly
connected to the linear and generalized linear bandits (Abbasi-Yadkori et al., 2011; Abe et al.,
2003; Agrawal & Goyal, 2013; Auer, 2002; Chu et al., 2011; Dani et al., 2008; Filippi et al., 2010;
Li et al., 2017b; Rusmevichientong & Tsitsiklis, 2010). The assortment optimization problem
is technically not a generalized linear model and is therefore more challenging. Moreover, in
contextual bandit problems, only one arm is selected by the decision-maker at each time period.
In contrast, each action in an assortment optimization problem involves a set of items, which
makes the action space more complicated.

4.5 Proofs of results in Sec. 4.1

4.5.1 Proof of Lemma 52
Let s ă s1 be the two endpoints such that F ps`q “ F ps1q “ F ˚ (if there are multiple such s, s1

pairs, pick any one of them). We will prove that s ă F ˚ ď s1, which then implies Lemma 52.
We first prove s ă F ˚. Assume by contradiction that F ˚ ď s. Clearly s ‰ 0 because F ˚ ą 0.

By definition of F and F ˚, we have

F ˚ “ F ps1q “

ř

riěs1
rivi

1`
ř

riěs1
vi

ùñ
ÿ

riěs1

pri ´ F
˚
qvi “ F ˚. (4.30)

Because F ˚ ď s, adding we have that
ÿ

riěs

pri ´ F
˚
qvi ě F ˚ ùñ F psq ě F ˚. (4.31)

This contradicts with the fact that F psq ‰ F ps`q and that F ˚ is the maximum value of F .
We next prove F ˚ ď s1. Assume by contradiction that F ˚ ą s1. Removing all items corre-

sponding to ri “ s1 in Eq. (4.30), we have
ÿ

riąs1

pri ´ F
˚
qvi ě F ˚ ùñ F ps1`q ě F ˚. (4.32)

This contradicts with the fact that F ps1`q ‰ F ps1q and that F ˚ is the maximum value of F .

4.5.2 Proof of Lemma 53
Because F pθ˚q “ θ˚ “ F ˚ and F ˚ is the maximum value of F , we have F pθq ď θ for all θ ě θ˚.
In addition, for any θ ě θ˚, by definition of F we have

F pθq ´ F pθ`q “ Rpti P N : ri ě θuq ´Rpti P N : ri ą θuq (4.33)

“

ř

riěθ
rivi

1`
ř

riěθ
vi
´

ř

riąθ
rivi

1`
ř

riąθ
vi

(4.34)
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“
p1`

ř

riąθ
viqp

ř

riěθ
riviq ´ p1`

ř

riěθ
viqp

ř

riąθ
riviq

p1`
ř

riěθ
viqp1`

ř

riąθ
viq

(4.35)

“
p1`

ř

riąθ
viqp

ř

ri“θ
riviq ´ p

ř

ri“θ
viqp

ř

riąθ
riviq

p1`
ř

riěθ
viqp1`

ř

riąθ
viq

(4.36)

“

ř

ri“θ
vi

1`
ř

riěθ
vi

“

θ ´ F pθ`q
‰

. (4.37)

Because θ ě F pθq holds for all θ ě θ˚, we conclude that θ ě F pθ`q also holds for all θ ě θ˚.
Subsequently, the right-hand side of Eq. (4.37) is non-negative and therefore F pθq ě F pθ`q.

4.5.3 Proof of Lemma 54
If F pθq ” F ˚ for all θ ď θ˚ then the lemma clearly holds. In the rest of the proof we shall
assume that there is at least one jumping point strictly smaller than θ˚. Formally, we let 0 ă
s1 ă s2 ă ¨ ¨ ¨ ă st ă θ˚ be all jumping points that are strictly smaller than θ˚. To prove Lemma
54, it suffices to show that F psjq ě sj and F psjq ě F ps`j q for all j “ 1, ¨ ¨ ¨ , t.

We use induction to establish the above claims. The base case is j “ t. Because F ˚ is the
maximum value of F , we conclude that F pstq ď F ˚ “ F ps`t q. In addition, because st ď θ˚ “
F ˚ “ F ps`t q, invoking Eq. (4.37) we have that F pstq ď F ps`t q. The base case is then proved.

We next prove the claim for sj , assuming it holds for sj`1 by induction. By inductive hypoth-
esis, F psj`1q ě sj`1 ě sj . Also, F ps`j q “ F psj`1q because there is no jump points between sj
and sj`1, and subsequently F ps`j q ě sj . Invoking Eq. (4.37) we proved F psjq ď F ps`j q.

To prove F psjq ě sj , define γj :“ p
ř

ri“sj
viq{p1 `

ř

riěsj
viq. It is clear that 0 ď γj ď 1.

By Eq. (4.37), we have

F psjq ´ sj “ F psjq ´ F ps
`
j q ` F ps

`
j q ´ sj (4.38)

“ γj
“

sj ´ F ps
`
j q
‰

` F ps`j q ´ sj (4.39)

“ p1´ γjq
“

F ps`j q ´ sj
‰

. (4.40)

As we have already proved F ps`j q ě sj , the right-hand side of the above inequality is non-
negative and therefore F psjq ě sj .

4.5.4 Proof of Theorem 13
We first state a simple lemma showing that the confidence bound `tpyτ q and utpyτ q constructed
in Algorithm 8 contains F pyτ q with high probability.
Lemma 60. With probability 1´OpT´1q, `tpθq ď F pθq ď utpθq for all t.

Proof. Let δ “ 1{T 2 be the confidence parameter in Algorithm 9. By Hoeffding’s inequality
(Lemma 89) and the fact that 0 ď F pθq ď 1 for all θ, we have

Pr rF pθq R r`tpθq, utpθqss “ Pr

«

ˇ

ˇ

ˇ

ˇ

ρtpθq

t
´ F pθq

ˇ

ˇ

ˇ

ˇ

ą

c

lnp1{δq

2t

ff

(4.41)
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ď 2 exp

"

´2t ¨
lnp1{δq

2t

*

ď 2δ “ 2{T 2. (4.42)

Subsequently, by union bound the probability of F pθq R r`tpθq, utpθqs for at least one t is at most
OpT´1q.

The following lemma, based on properties of the potential function F and Lemma 60, estab-
lishes that (with high probability) the shrinkage of aτ or bτ are “consistent”; i.e., θ˚ is always
contained in raτ , bτ s. Its proof is based on the intuitive two-case analysis discussed before The-
orem 13 and will be provided later.
Lemma 61. With probability 1´OpT´1q, aτ ď θ˚ ď bτ for all τ “ 1, 2, ¨ ¨ ¨ , τ0, where τ0 is the
last outer iteration of Algorithm 8.

Using Lemmas 60 and 61, we are able to prove the following lemma that upper bounds the
regret incurred at each outer iteration τ using the distance between the trisection points xτ and
yτ .
Lemma 62. For τ “ 0, 1, ¨ ¨ ¨ let T pτq denote the set of all indices of inner iterations at outer
iteration τ . Conditioned on the success events in Lemmas 60 and 61, it holds that

E
ÿ

tPT pτq

RpS˚q ´RpStq À ε´1
τ log T. (4.43)

We are now ready to prove Theorem 13.

Proof. Recall the definition that ετ “ yτ ´ xτ for outer iterations τ “ 0, 1, ¨ ¨ ¨ . Because after
each outer iteration we either set bτ`1 “ yτ or aτ`1 “ xτ , it is easy to verify that ετ “ p2{3q¨ετ´1.
Subsequently, invoking Lemma 61 and using summation of geometric series we have

E
T
ÿ

t“1

RpS˚q ´RpStq À
τ0
ÿ

τ“0

ε´1
τ log T À ε´1

τ0
log T, (4.44)

where τ0 is the total number of outer iterations executed by Algorithm 8. On the other hand,
because at each outer iteration τ the revenue level aτ is exploited for exactly nτ “ 16rpyτ ´
xτ q

´2 lnpT 2qs times, we have
T ě nτ0 Á ε´2

τ0
log T. (4.45)

Combining Eqs. (4.44) and (4.45) we conclude that RegretptStu
T
t“1q À

?
T log T .

Proof of Lemma 61 We use induction to prove this lemma. We also conditioned on the fact
that `tpxτ q ď F pxτ q ď utpxτ q and `tpyτ q ď F pyτ q ď utpyτ q for all t and τ , which happens with
probability at least 1´OpT´1q by Lemma 60.

We first prove the lemma for the base case of τ “ 0. According to the initialization step
in Algorithm 8, we have aτ “ 0 and bτ “ 1. On the other hand, for any θ ě 0 it holds that
0 ď F pθq ď F ˚ ď 1. Therefore, 0 ď θ˚ ď 1 and hence aτ ď θ˚ ď bτ for τ “ 0.

We next prove the lemma for outer iteration τ , assuming the lemma holds for outer iteration
τ ´ 1 (i.e., aτ´1 ď r˚ ď bτ´1). According to the trisection parameter update step in Algorithm
8, the proof can be divided into two cases:
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Case 1: utpyτ´1q ă yτ´1. Because `tpyτ´1q ď F pyτ´1q ď utpyτ´1q always holds, we conclude
in this case that F pyτ´1q ă yτ´1. Invoking Lemma 54 we conclude that bτ “ yτ´1 ą θ˚. On the
other hand, by inductive hypothesis aτ “ aτ´1 ď θ˚. Therefore, aτ ď r˚ ď bτ .

Case 2: utpyτ´1q ě yτ´1. In this case, the revenue level yτ´1 must be explored at every inner
iteration in Algorithm 8 at outer iteration τ ´ 1, because utpyτ´1q is a non-increasing function
of t. Denote ετ “ yτ ´ xτ and nτ “ 16rε´2

τ lnpT 2qs as the number of inner iterations in outer
iteration τ . Subsequently, the length of the confidence intervals on yτ´1 at the end of all inner
iterations can be upper bounded by

|utpyτ´1q ´ `tpyτ´1q| ď 2

d

lnpT 2q

nτ
ď

1

2
ε´1
τ . (4.46)

Invoking Lemma 60 we then have

F pyτ´1q ě `tpyτ´1q ě utpyτ´1q ´
yτ´1 ´ xτ´1

2
ě yτ´1 ´

yτ´1 ´ xτ´1

2
. (4.47)

We now establish that xτ´1 ď θ˚, which implies aτ ď θ˚ ď bτ because aτ “ xτ´1 and
bτ “ bτ´1 ě θ˚ by the inductive hypothesis. Assume by contradiction that xτ´1 ą θ˚. By
Lemma 53, F pxτ´1q ď xτ´1 and F pxτ´1q ě F pyτ´1q. Subsequently,

F pyτ´1q ď xτ´1 “ yτ´1 ´ pyτ´1 ´ xτ´1q ă yτ´1 ´
yτ´1 ´ xτ´1

2
, (4.48)

which contradicts Eq. (4.47).

Proof of Lemma 62 This lemma upper bounds the expected regret incurred at each outer iter-
ation τ , conditioned on the success events in Lemmas 60 and 61.

We analyze the regret incurred at outer iteration τ from exploration of yτ and exploitation of
aτ separately.
1. Regret from exploring yτ : suppose the level set Lyτ pN q is explored for mτ ď nτ times at

outer iteration τ . Then we have umτ pyτ q ě yτ . In addition, by Lemma 60 and widths in the
constructed confidence bands `mτ pyτ q and umτ pyτ q, we have with probability 1´OpT´1q that
`mτ pyτ q ď F pyτ q ď umτ pyτ q and |umτ pyτ q ´ `mτ pyτ q| ď 2

a

plnpT 2q{2mτ . Subsequently,

F pyτ q ě `mτ pyτ q ě umτ pyτ q ´ 2

d

lnpT 2q

2mτ

ě yτ ´ 2

c

lnT

mτ

. (4.49)

Note also that yτ ě aτ ě θ˚ ´ 3ετ “ F ˚ ´ 3ετ ; we have

F ˚ ´ F pyτ q ď 3ετ ` 2

c

lnT

mτ

. (4.50)

By Lemma 52, F ˚ “ RpS˚q and therefore the right-hand side of the above inequality is
an upper bound on the regret incurred by exploring revenue level yτ (corresponding to the
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assortment selection Lyτ ) once. As the exploration is carried out for mτ times, the total regret
for all exploration steps at revenue level xτ can be upper bounded by

mτ

«

3ετ ` 2

c

lnT

mτ

ff

ď 3mτετ `
a

4mτ lnT ď 3nτετ `
a

4nτ lnT À ε´1
τ log T. (4.51)

Here the last inequality holds because nτ ď 16ε´2
τ lnpT 2q.

2. Regret from exploiting aτ : by Lemma 61, aτ ď θ˚, and therefore F paτ q ě aτ . In addition,
aτ ě θ˚ ´ 3ετ by the definition of ετ . Subsequently,

F paτ q ě aτ ě θ˚ ´ 3ετ “ F ˚ ´ 3ετ . (4.52)

Re-organizing terms on both sides of the above inequality and noting that F ˚ “ F pS˚q, we
have

F pS˚q ´ F paτ q ď 3ετ . (4.53)

Therefore, the regret for each exploitation of revenue level aτ (corresponding to the assort-
ment selection Laτ ) can be upper bounded by ετ . Because the revenue level aτ is exploited
for nτ times and nτ ď 16ε´2

τ lnpT 2q, the total regret of exploitation of aτ at outer iteration τ
can be upper bounded by

nτ ¨ 3ετ À ε´1
τ log T. (4.54)

4.5.5 Proof of Lemma 55
Without loss of generality we assume X1, ¨ ¨ ¨ , XL P r0, 1s almost surely, while the general case
of X1, ¨ ¨ ¨ , XL P ra, bs can be dealt with by a simple re-scaling argument. Denote k :“ tlog2 Lu.
For each ` P t1, 2, 4, ¨ ¨ ¨ , 2ku, by standard Hoeffding’s inequality (Lemma 89), we have

Pr

«
ˇ

ˇ

ˇ

ˇ

ˇ

1

`

ÿ̀

i“1

Xi ´ µ

ˇ

ˇ

ˇ

ˇ

ˇ

ď

c

lnr8{pδ`qs

2`

ff

ě 1´
δ`

4
.

Subsequently, by union bound and the fact that 1` 2` 4` ¨ ¨ ¨ ` 2k ď 2k`1 ď 2L, we have

Pr

«

@` “ 1, 2, 4, ¨ ¨ ¨ , 2k,

ˇ

ˇ

ˇ

ˇ

ˇ

1

`

ÿ̀

i“1

Xi ´ µ

ˇ

ˇ

ˇ

ˇ

ˇ

ď

c

lnr8{pδ`qs

2`

ff

ě 1´
δL

2
. (4.55)

Next consider any ` P t1, 2, 4, ¨ ¨ ¨ , 2ku. By Hoeffding’s maximal inequality (Lemma 93), we
have

Pr

«

@i ď mint`, n´ `u,
ˇ

ˇX``1 ` ¨ ¨ ¨ `X``i ´ i ¨ µ
ˇ

ˇ ď

c

`

2
lnr8{pδ`qs

ff

ě 1´
δ`

4
.

Again using union bound over all ` “ 1, 2, 4, ¨ ¨ ¨ , 2k and the fact that 1 ` 2 ` 4 ` ¨ ¨ ¨ ` 2k ď
2k`1 ď 2L, we have

Pr

«

@` “ 1, 2, ¨ ¨ ¨ , 2k, i ď mint`, n´ `u,
ˇ

ˇX``1 ` ¨ ¨ ¨ `X``i ´ i ¨ µ
ˇ

ˇ ď

c

`

2
lnr8{pδ`qs

ff

ě 1´
δL

2
.

(4.56)

139



Combining Eqs. (4.55,4.56), we have with probability 1´δL uniformly over all ` “ 1, 2, 4, ¨ ¨ ¨ , 2k

and i ď mint`, n´ `u that
ˇ

ˇX1 ` ¨ ¨ ¨ `X` `X``1 ` ¨ ¨ ¨ `X``i ´ p`` iqµ
ˇ

ˇ ď
a

2` lnr8{pδ`qs.

Dividing both sides of the above inequality by p`` iq we complete the proof of Lemma 55.

4.5.6 Proof of Theorem 14
We first define some notations. Let τ “ 0, 1, ¨ ¨ ¨ be the number of outer iterations in Algorithm
8, ετ “ pyτ ´ xτ q be the distance between the two trisection points at outer iteration τ , and
nτ “ 8rε´2

τ lnp8Tε2
τ qs be the pre-specified number of inner iterations. Recall also that θ˚ “

F pθ˚q “ F ˚ is the optimal revenue value suggested by Lemma 52.
Define the following three disjoint events that partition the entire probabilistic space:

• Event E1pτq: θ˚ ă aτ ă bτ ;
• Event E2pτq: aτ ď θ˚ ď bτ ;
• Event E3pτq: aτ ă bτ ă θ˚.

Let τ0 P N be the last outer iteration in Algorithm 8. Let also T pτq Ď rT s be the indices of inner
iterations in outer iteration τ , satisfying |T pτq| ď 2nτ almost surely. For ω P t1, 2, 3u, τ P N
and α, β P R`, define

ψωτ pα, βq :“ E

»

–

τ0
ÿ

τ 1“τ

ÿ

tPT pτ 1q

RpS˚q ´RpStq

ˇ

ˇ

ˇ

ˇ

Eωpτq, |aτ ´ θ˚| “ α, |F paτ q ´ aτ | “ β

fi

fl . (4.57)

Intuitively, ψωτ pα, βq is the expected regret Algorithm 8 incurs for outer iterations τ, τ`1, ¨ ¨ ¨ , τ0,
conditioned on the event Eωpτq and other boundary conditions at the left margin aτ .

The following three lemmas are the central steps in our proof, which establish recurrence
relationships among ψωτ pα, βq, for ω P t1, 2, 3u. The proofs are technically involved and given
later. To simplify notations, we write an À bn or bn Á an if there exists a universal constant
C ą 0 such that |an| ď C|bn| for all n P N.
Lemma 63 (Regret in Case 1). ψ1

τ pα, βq ď βT`
řτ0
τ 1“τ`1 sup∆ąετ 1

∆T expt´nτ∆
2u`Opε´1

τ 1 logpTε2
τ 1qq.

Lemma 64 (Regret in Case 2). ψ2
τ pα, βq ď Opε´1

τ logpTε2
τ qq ` ψ2

τ`1pα
1
2, β

1
2q ` ψ3

τ`1pα
1
3, β

1
3q ¨

OplogpTε2
τ q{pTε

2
τ qq`sup∆ąετ ψ

1
τ`1pα

1
1, β

1
1p∆qq expt´nτ∆

2
τu for parameters α11, β

1
1p∆q, α

1
2, β

1
2, α

1
3, β

1
3

that satisfy β11p∆q ď ∆ and α13 ď 3ετ .
Lemma 65 (Regret in Case 3). ψ3

τ pα, βq ď αT .
We are now ready to complete the proof of Theorem 14 by combining Lemmas 64, 63 and

65.

Proof. We first get a cleaning expression of ψ1
τ pα, βq using Lemma 63. First note that ∆ ÞÑ

∆ expt´nτ∆
2u attains its maximum on ∆ ą 0 at ∆ “

a

1{2nτ . Also note that nτ “ r8ε´2
τ lnp8Tε2

τ qs

and therefore
a

1{2nτ ď ετ . Subsequently,
τ0
ÿ

τ 1“τ

sup
∆ąετ

∆T expt´nτ∆
2
u ď

τ0
ÿ

τ 1“τ

ετT expt´nτε
2
τu ď

τ0
ÿ

τ 1“τ

ετT expt´ lnpTε2
τ qu
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ď

τ0
ÿ

τ 1“τ

ε´1
τ “ Opε´1

τ0
q, (4.58)

where the last asymptotic holds because tετu forms a geometric series. Subsequently,

ψ1
τ pα, βq ď βT `

τ0
ÿ

τ 1“τ

Opε´1
τ 1 logpTε2

τ qq. (4.59)

It remains the bound the summation term on the right-hand side of the above inequality.
Denote sτ 1 “ ε´1

τ 1 lnpTε2
τ 1q “ ρ´τ

1

lnpTρ2τ 1q, where ρ “ 2{3. We then have sτ 1 “ ρτ0´τ
1

r1 `
ln ρ´2pτ0´τ 1qssτ0 ď 2pτ0 ´ τ

1 ` 1qρτ0´τ
1

lnp1{ρq for all τ 1 ď τ0. Subsequently,
τ0
ÿ

τ 1“τ

sτ 1 ď
τ0
ÿ

τ 1“0

2pτ0 ´ τ
1
` 1qρτ0´τ

1

lnp1{ρq ¨ sτ0 ď Op1q ¨ sτ0 . (4.60)

Therefore,
ψ1
τ pα, βq ď βT `Opε´1

τ0
logpTε2

τ0
qq. (4.61)

We are now ready to derive the final regret upper bound by analyzing ψ2
0pα, βq, because the

event E2p0q always holds since 0 ď θ˚ ď 1. Applying Lemma 64 with Lemma 65 and Eq. (4.61),
we have for all τ P t0, 1, ¨ ¨ ¨ , τ0u that

ψ2
τ pα, βq ď ψ2

τ`1pα
1
2, β

1
2q `Opε

´1
τ logpTε2

τ qq `OpετT q ¨
lnpTε2

τ q

Tε2
τ

` sup
∆ąετ

`

∆T `Opε´1
τ0

logpTε2
τ0
qq
˘

expt´nτ∆
2
u

ď ψ2
τ`1pα

1
2, β

1
2q `Opε

´1
τ logpTε2

τ qq ` sup
∆ąετ

∆T expt´nτ∆
2
u

`Opε´1
τ0

logpTε2
τ0
qq ¨ expt´nτε

2
τu. (4.62)

Using the same analysis as in Eq. (4.58), we know sup∆ąετ ∆T expt´nτ∆
2u ď Opε´1

τ q and
expt´nτε

2
τu ď 1{pTε2

τ q. Subsequently, summing all terms τ “ 0, 1, ¨ ¨ ¨ , τ0 together we have

ψ2
0pα, βq ď

τ0
ÿ

τ“0

Opε´1
τ logpTε2

τ qq `Opε
´1
τ0

logpTε2
τ0
qq ¨

1

Tε2
τ

À ε´1
τ0

logpTε2
τ0
q ¨ p1` 1{pTε2

τ0
qq. (4.63)

Finally, note that nτ0 Á ε´2
τ0

and nτ0 ď T , implying that ετ0 Á
a

1{T . Plugging the lower bound
on ετ0 into the above inequality we have ψ2

0pα, βq À
?
T , which completes the proof of Theorem

14.

Proof of Lemma 64 First analyze the expected regret incurred at outer iteration τ . by ex-
ploiting the left end-point aτ (corresponding to assortment Laτ ) for nτ iterations. Also, be-
cause aτ ď θ˚ ď bτ conditioned on E2pτq, by Lemmas 52 and 54 we have F paτ q ě aτ ě
θ˚ ´ |bτ ´ aτ | “ F pθ˚q ´ |bτ ´ aτ | ě RpS˚q ´ 3ετ . Subsequently,

Regret by exploiting Laτ : ď 3ετ ¨ nτ À ε´1
τ logpTε2

τ q. (4.64)
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Next we analyze the expected regret incurred at outer iteration τ by exploring the right trisec-
tion point yτ (corresponding to assortment Lyτ ). This is done by a case analysis. If yτ ď θ˚, then
the regret incurred by exploiting Lyτ at outer iteration τ is again upper bounded (up to numerical
constants) by ε´1

τ logpTε2
τ q, similar to Eq. (4.64). Otherwise, for the case of yτ ą θ˚, define

∆τ :“ yτ ´F pyτ q. By Lemma 53, we know ∆τ ě 0, and also by Lemma 52, each exploration of
Lyτ incurs a regret of no more than ∆τ . Let mτ be the number of times Lyτ is explored at outer
iteration τ . By definition of the stopping rule in Algorithm 8, we have

Pr rmτ ě `s ď Pr

«

ρ`
`
`

c

2 lnp8T {`q

`
ě yτ

ff

“ Pr

«

ρ`
`
´ F pyτ q ě ∆τ ´

c

2 lnp8T {`q

`

ff

. (4.65)

Because ρ` is a sum of ` i.i.d. random variables with mean F pyτ q and values in r0, 1s almost
surely, applying Hoeffding’s inequality (Lemma 89) we have

Pr rmτ ě `s ď exp

"

´2
´?

`∆τ ´
a

2 lnp8T {`q
¯2
*

À

"

1, if ∆τ ď
a

8 lnp8T {`q{`;
expt´`∆2

τ{2u, otherwise.

Subsequently,

Regret by exploring Lyτ : ď

nτ
ÿ

`“1

`∆τ Prrmτ “ `s ď
nτ
ÿ

`“1

∆τ Prrmτ ě `s

À

`0´1
ÿ

`“1

c

lnpT {`q

`
`

nτ
ÿ

`“`0

∆τ expt´`∆2
τ{2u (4.66)

À
a

`0 lnpT {`0q ` sup
∆ą
?

8 lnp8T {`0q{`0

∆ ¨

8
ÿ

`“`0

expt´`∆2
{2u (4.67)

ď
a

`0 lnpT {`0q ` sup
∆ą
?

8 lnp8T {`0q{`0

∆ expt´`0∆2{2u

1´ expt´∆2{2u

ď
a

`0 lnpT {`0q ` sup
∆ą
?

8 lnp8T {`0q{`0

∆ expt´∆2{2u

1´ expt´∆2{2u

ď
a

`0 lnpT {`0q `

d

8 lnp8T {`0q

`0

¨
1

1´ expt´4 lnp8T {`0qu
(4.68)

À
a

`0 lnpT {`0q. (4.69)

Here in Eq. (4.66), `0 is the smallset positive integer not exceeding nτ such that ∆τ ą
a

8 lnp8T {`0q{`0.
(If ∆τ ď

a

8 lnp8T {`0q{`0 holds for all 1 ď `0 ď nτ , then the second term in Eq. (4.66) is 0 and
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one can conveniently set `0 “ nτ ` 1 in this case.); Eq. (4.67) holds because

`0
ÿ

`“1

c

lnpT {`q

`
ď

rlog2 `0s
ÿ

j“1

2j
c

lnpT {2jq

2j
“

rlog2 `0s
ÿ

j“1

a

2j lnpT {2jq À
a

`0 lnpT {`0q;

Eq. (4.68) holds because ∆ ÞÑ ∆e´∆2{2{p1 ´ e´∆2{2q is monotonically decreasing on ∆ ą 0.
Finally, because `0 ď nτ and nτ À ε´2

τ logpTε2
τ q ě ε´2

τ , we have

Regret by exploring Lyτ À
a

nτ lnpT {nτ q À ε´1
τ logpTε2

τ q. (4.70)

Finally, we consider regret incurred at later outer iterations τ 1 “ τ ` 1, ¨ ¨ ¨ , τ0. This is done
by another case analysis on the relative location of θ˚ with respect to aτ`1 and bτ`1:
- E2pτ ` 1q: aτ`1 ď θ˚ ď bτ`1: the additional regret is upper bounded by ψ2

τ`1pα
1
1, β

1
1q for

some values of α11, β
1
1 that are not important;

- E1pτ ` 1q: θ˚ ă aτ`1 ă bτ`1: the additional regret is upper bounded by ψ1
τ`1pα

1
2, β

1
2q with

β12 ď ∆τ “ yτ ´ F pyτ q and the value of α12 not important;

- E3pτ ` 1q: aτ`1 ă bτ`1 ă θ˚: the additional regret is upper bounded by ψ3
τ`1pα

1
3, β

1
3q with

α13 ď 3ετ and the value of β13 not important.
It remains to upper bound the probability the latter two cases above occur. E1pτ `1q occurs if

for all inner iterations t P T pτq, the exploration step fails to detect F pyτ q below yτ , meaning that
ρ`
`
`

b

2 lnp8T {`q
`

ą yτ for all ` P t1, ¨ ¨ ¨ , nτu. Also note that because θ˚ ă aτ`1 “ xτ “ yτ ´ ετ ,
by Lemma 53 we know that ∆τ “ yτ ´ F pyτ q ě ετ . Using Hoeffding’s inequality, we have

PrrE1pτ ` 1qs ď Pr

«

@`,
ρ`
`
´ F pyτ q ą ∆τ ´

c

2 lnp8T {`q

`

ff

ď Pr

«

ρnτ
nτ
´ F pyτ q ą ∆τ ´

d

2 lnp8T {`q

nτ

ff

ď exp

"

´2
´

?
nτ∆τ ´

a

2 lnp8T {nτ q
¯2
*

ď exp
 

´nτ∆
2
τ

(

. (4.71)

Here Eq. (4.71) holds because
?
nτ∆τ ě

?
nτετ ě

a

8 lnp8Tε2
τ q ě 2

a

2 lnp8T {nτ q by the
choice of nτ .

The E3pτ ` 1q event occurs if the exploration step in Algorithm 8 falsely detects yτ ą F pyτ q

at some stage ` P t1, ¨ ¨ ¨ , nτu, meaning that ρ`
`
`

b

2 lnp8T {`q
`

ă yτ . Note that because bτ`1 “

yτ ă θ˚, by Lemma 54, we know F pyτ q ě yτ . By Lemma 55,

PrrE3pτ ` 1qs “ Pr

«

D`,
ρ`
`
ă yτ ´

c

2 lnp8T {`q

`

ff

ď Pr

«

D`,
ˇ

ˇ

ˇ

ρ`
`
´ F pyτ q

ˇ

ˇ

ˇ
ą

c

2 lnp8T {`q

`

ff
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À
nτ
T
À

lnpTε2
τ q

Tε2
τ

. (4.72)

Combining all regret parts we complete the proof of Lemma 64.

Proof of Lemma 63 The regret for all outer iterations after τ (conditioned on E1pτq : θ˚ ă
aτ ă bτ ) consists of two parts: the regret from exploiting Lyτ 1 for τ 1 ě τ , and the regret from
exploring Laτ 1 .

For any τ 1 P tτ, τ ` 1, ¨ ¨ ¨ , τ0u, the expected regret from exploiting Ly1τ can always be upper
bounded by Opε´1

τ 1 logpTε2
τ 1qq by the same analysis in the proof of Lemma 64 (more specifically

the array of inequalities leading to Eqs. (4.67) and (4.69)), regardless of the values of α and β.
This corresponds to the

řτ0
τ 1“τ Opε

´1
τ 1 logpTε2

τ 1qq term in Lemma 63.
We next upper bound the expected regret incurred by exploring Laτ 1 for all τ 1 “ τ, τ `

1, ¨ ¨ ¨ , τ0. Because aτ ´ F paτ q “ β by the definition of ψ1
τ pα, βq, the expected regret incurred

by exploring Laτ 1 , τ
1 P tτ, τ ` 1, ¨ ¨ ¨ , τ0u is at most βT assuming aτ “ aτ`1 “ ¨ ¨ ¨ “ aτ0 . It

then remains to bound the additional regret incurred by the movements of aτ 1 in subsequent outer
iterations.

LetW “ tτ 11, τ
1
2, ¨ ¨ ¨ , τ

1
`u be outer iterations at which the update rule aτ`1 Ð xτ is applied.

We then have the following observations:
1. Each τ 1 P W would incur an additional regret upper bounded by ∆τ 1T , where ∆τ 1 “ yτ 1 ´
F pyτ 1q ě ετ 1;

2. For each τ 1 P tτ, τ ` 1, ¨ ¨ ¨ , τ0u, the probability update aτ 1`1 Ð xτ 1 is applied is at most
expt´nτ 1∆τ 1u, using the same analysis in the proof of Lemma 64 (more specifically the array
of inequalities leading to Eq. (4.71)).

Summarizing the above observations, by the law of total expectation the expected regret from ex-
ploringLaτ 1 at subsequent iterations τ 1 ě τ can be upper bounded by βT`

řτ0
τ 1“τ sup∆ąετ ∆T expt´nτ∆

2u.

Proof of Lemma 65 Because aτ “ θ˚ ´ α ă θ˚, by Lemma 54 we have F paτ q ě aτ “
θ˚ ´ α “ F pθ˚q ´ α. Subsequently, F pS˚q ´ F paτ q ď α thanks to Lemma 52. Also note that
conditioned on E3pτq, the revenue levels explored or exploited at each time epoch t P T pτ 1q,
τ ď τ 1 ď τ0 are sandwiched between aτ and θ˚, and therefore RpS˚q ´ RpStq ď α. Hence,
ψ3
τ pα, βq ď α ¨ E

řτ0
τ 1“τ |T pτ 1q| ď αT .

4.5.7 Proof of Theorem 15
We first describe the underlying parameter values on which our lower bound proof is built. Fix
revenue parameters triuNi“1 as r1 “ 1, r2 “ 1{2 and r3 “ ¨ ¨ ¨ “ rN “ 0, which are known a
priori. We then consider two constructions of the unknown utility parameters tviuNi“1:

P0 : v1 “ 1´ 1{4
?
T , v2 “ 1, v3 “ ¨ ¨ ¨ “ vN “ 0;

P1 : v1 “ 1` 1{4
?
T , v2 “ 1, v3 “ ¨ ¨ ¨ “ vN “ 0.

We note that P0 and P1 also give the probability distributions that characterize the customer
random purchasing actions; and thus we will use PjrAs to denote the probability of event A
under the utility parameters specified by Pj for j P t0, 1u.
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The first lemma shows that there does not exist estimators that can identify P0 from P1 with
high probability with only T observations of random purchasing actions. Its proof involves
careful calculation of the Kullback-Leibler (KL) divergence between the two hypothesized dis-
tributions and subsequent application of Le Cam’s lemma to the testing question between P0 and
P1.
Lemma 66. For any estimator pψ P t0, 1u whose inputs are T random purchasing actions
i1, ¨ ¨ ¨ , iT , it holds that maxjPt0,1u Pjr pψ ‰ js ě 1{3.

On the other hand, the following lemma shows that, if the policy π can achieve a small
regret under both P0 and P1, then one can construct an estimator based on π such that with
large probability the estimator can distinguish between P0 and P1 from observed customers’
purchasing actions.
Lemma 67. Suppose a policy π satisfies RegretptStu

T
t“1q ă

?
T {384 for both P0 and P1. Then

there exists an estimator pψ P t0, 1u such that Pjr pψ ‰ js ď 1{4 for both j “ 0 and j “ 1.
Lemma 67 is proved by explicitly constructing a classifier (tester) pψ from any sequence of

low regret. In particular, for any assortment sequence tStuTt“1, we construct pψ as pψ “ 0 if
1
T

řT
t“1 Ir1 P St, 2 R Sts ě 1{2 and pψ “ 1 otherwise. Using Markov’s inequality and the

construction of tri, viu, it can be shown that if RegretptStu
T
t“1q ą

?
T {384 then pψ is a good

tester with small testing error. Detailed calculations and the complete proof is deferred to the
supplement.

Combining Lemmas 66 and 67 we proved our lower bound result in Theorem 15.

Proof of Lemma 66 We first state a lemma that upper bounds the KL divergence under P0 and
P1 for arbitrary assortment selections S P S.
Lemma 68. For any S P S let P0pSq and P1pSq be the distribution of the purchasing action
under P0 and P1, respectively. Then KLpP0pSq}P1pSqq ď 1{18T .

Proof of Lemma 68. If 1 R S then P0pSq ” P1pSq and therefore KLpP0pSq}P1pSqq “ 0. In
addition, because vi “ ri “ 0 for all i ě 3, the items apart from 1 and 2 in S do not affect
the distribution of the purchasing action under both P0 and P1. Therefore, it suffices to compute
KLpP0pt1uq}P1pt1uqq and KLpP0pt1, 2u}P1pt1, 2uqq.

Before delving into detailed calculations, we first state a simple proposition bounding the KL
divergence between two categorical distributions. It is simple to verify.

Proposition 18. Let P and Q be two categorical distributions on J items, with parameters
p1, ¨ ¨ ¨ , pJ and q1, ¨ ¨ ¨ , qJ respectively. Denote also εj :“ pj´qj . Then KLpP }Qq ď

řJ
j“1 ε

2
j{qj .

We first consider KLpP0pt1uq}P1pt1uqq. By definition, P0pi “ 1|t1uq ď 1{2 ´ 1{24
?
T and

P1ri “ 2|t2us ď 1{2` 1{24
?
T . Also, mini“0,1tP1pi|t1uqu ě 1{3. Subsequently,

KLpP0pt1uq}P1pt1uqq ď 2ˆ
1{144T

1{3
ď

1

24T
ď

1

18T
. (4.73)

We next consider KLpP0pt1, 2uq}P1pt1, 2uqq. Note that P0pi “ 0|t1, 2uq ą P1pi “ 0|t1, 2uq,
P0pi “ 1|t1, 2uq ă P1pi “ 1|t1, 2uq and P0pi “ 2|t1, 2uq ą P1pi “ 2|t1, 2uq. Also, P0pi “
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1|t1, 2uq ď 1{3´1{48
?
T , P1pi “ 1|t1, 2uq ě 1{3`1{48

?
T and min0ďiď2tP1pi|t1, 2uqu ě 1{4.

Subsequently,

KLpP0pt1, 2uq}P1pt1, 2uqq ď 3ˆ
1{576T

1{4
ď

1

48T
ď

1

18T
. (4.74)

The lemma is thus proved.

We are now ready to prove Lemma 66.

Proof of Lemma 66. Denote }P ´ Q}TV :“ 2 supA |P pAq ´ QpAq| as the total variation norm
between P and Q, and let PbT0 , PbT1 denote the distribution of tit|StuTt“1 parameterized by P0

and P1. By Pinsker’s inequality and the conditional independence of it conditioned on St, we
have

}PbT0 ´ PbT1 }TV ď

b

2KLpPbT0 }PbT1 q ď sup
Sp1q,¨¨¨ ,St

g

f

f

e2
T
ź

t“1

KLpP0pStq}P1pStqq (4.75)

ď
?

2T ¨ sup
S

a

KLpP0pSq}P1pSqq ď
?

2T ¨
a

1{18T ď 1{3. (4.76)

Using Le Cam’s inequality we have

inf
pψ

max
j“0,1

Pj

”

pψ ‰ j
ı

ě
1

2

`

1´ }PbT0 ´ PbT1 }TV
˘

ě
1

3
, (4.77)

Proof of Lemma 67 Denote ℘0 :“ 1{T ¨
řT
t“1 Ir1 P St, 2 R Sts, ℘1 :“ 1{T ¨

řT
t“1 Ir1, 2 P Sts,

℘2 :“ 1{T ¨
řT
t“1 Ir2 P St, 1 R Sts and ℘ :“ 1{T ¨

řT
t“1 Ir1, 2 R Sts. Because the four events

partition the entire probability space, we have ℘0 ` ℘1 ` ℘2 ` ℘ “ 1. In addition, it is easy to
verify that S˚ “ t1u under P0 and under P1. Subsequently,

RegretπpT q

T
ď

℘0

12
?
T
`
℘2 ` ℘

24
under P0;

RegretπpT q

T
ď

℘1

48
?
T
`
℘2 ` ℘

6
under P1.

Using Markov’s inequality and the fact that RegretπpT q ď
?
T {384 under both P0 and P1, we

have

P0

„

℘0

12
?
T
`
℘2 ` ℘

24
ą

1

96
?
T



ď
1

4
and P1

„

℘1

48
?
T
`
℘2 ` ℘

6
ą

1

96
?
T



ď
1

4
. (4.78)

Subsequently, because ℘0 ` ℘1 ` ℘2 ` ℘ “ 1, we know that ℘0 ą 1{2 with probability ě 2{3

under P0 and ℘0 ă 1{2 with probability ě 2{3 under P1. Define pψ as

pψ :“

"

0 if ℘0 ě 1{2;
1 if ℘0 ă 1{2.

(4.79)

The estimator pψ then satisfies Lemma 67 by the above argument.
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4.5.8 Proof of Theorem 16
Throughout the proof we set r1 “ ¨ ¨ ¨ “ rN “ 1 and v1, ¨ ¨ ¨ , vN P t1{K, p1 ` εq{Ku for some
parameter ε P p0, 1{2s to be specified later. For any subset S Ď rN s, we use θS to indicate the
parameterization where vi “ p1` εq{K if i P S and vi “ 1{K if i R S.

For the ease of presentation, we further define some notations. We use SK to denote all
subsets of rN s of size K; that is, S P SK implies |S| “ K. Clearly, |SK | “

`

N
K

˘

. We use PS and
ES to denote the law and expectation under the parameterization θS .

The first step in our proof is to show that under problem parameter θS0 for some fixed S0 P

SK , any assortment selection rSt P SK that differs significantly from S0 would incur a large one-
stage regret. This is formalized in Lemma 69, which shows that, if a δ portion of items differ
between S0 and rSt then the assortment rSt incurs a one-stage regret of Ωpδεq. This reduces the
problem of lower bounding the regret of any policy to lower bounding the (expected) number of
times a specific item i P rN s is offered, denoted as rNi in our proof.

At the second step we show, through a “neighboring argument” detailed in Eq. (4.83), the
question of bounding Er rNis can be reduced to upper bounding the discrepancy between ESr rNis

and ES1r rNis under two “neighboring” parameterizations θS and θS1 . Such an upper bound can
be established by using the Pinsker’s inequality, together with an upper bound on the Kullback-
Leibler (KL) divergence between PS and PS1 , which is stated in Lemma 70.

Finally, by appropriately setting the parameter ε which scales with N , T and K (more specif-
ically, ε is set to ε “ mint0.05

a

N{T , 0.5u), we complete the proof of Theorem 16.

The counting argument

We first prove the following lemma that bounds the regret of any assortment selection rSt P SK :
Lemma 69. Fix arbitrary S0 P SK and let v be the parameter associated with θS0; that is,
vi “ p1 ` εq{K for i P S0 and vi “ 1{K for i P rN szS0, where ε P p0, 1{2s. For any rSt P SK ,it
holds that

max
SPSK

tRvpSqu ´RvprStq ě
δε

9
,

where δ “ 1´ p|rSt X S0|{Kq.

Proof. By construction of v, it is clear that maxSPSKtRvpSqu “ RvpS0q “ p1` εq{p2` εq. On
the other hand, RvprStq “ p1` p1´ δqεq{p2` p1´ δqεq. Subsequently,

max
SPSk

tRvpSqu ´RvprStq “
1` ε

2` ε
´

1` p1´ δqε

2` p1´ δqε

“
δε

p2` εqp2` p1´ δqεq
ě
δε

9
,

where the last inequality holds because 0 ă ε ď 1{2.

For each assortment selection St Ď rN s, |St| ď K, let rSt Ě St be an arbitrary subset of size
K that contains St; that is, rSt Ě St, rSt Ď rN s and |rSt| “ K. For example, when |St| “ K
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one may directly set rSt “ St. Define rNi :“
řT
t“1 Iri P rSts. Using Lemma 69 and the fact that

trStu
T
t“1 suffers less regret than tStuTt“1, we have

max
SPSK

ES

«

T
ÿ

t“1

RvpSq ´RvpStq

ff

ě max
SPSK

ES

«

T
ÿ

t“1

RvpSq ´RvprStq

ff

ě
1

|SK |
ÿ

SPSK

ES

«

T
ÿ

t“1

RvpSq ´RvprStq

ff

(4.80)

ě
1

|SK |
ÿ

SPSK

ÿ

iRS

ESr rNis ¨
ε

9K
(4.81)

“
ε

9

˜

T ´
1

|SK |
ÿ

SPSK

1

K

ÿ

iPS

ESr rNis

¸

. (4.82)

Here Eq. (4.80) holds because the maximum regret is always lower bounded by the average regret
(averaging over all parameterization θS for S P SK), Eq. (4.81) follows from Lemma 69, and
Eq. (4.82) holds because

řN
i“1 ESr rNis “ ES

”

řN
i“1

rNi

ı

“ TK for any S Ď rN s. The lower
bound proof is then reduced to finding the largest ε such that the summation term in Eq. (4.82) is
upper bounded by, say, cT for some constant c ă 1.

Pinsker’s inequality

The major challenge of bounding the summation term on the right-hand side of Eq. (4.82) is
the

ř

iPS ESr rNis term. Ideally, we expect this term to be small (e.g., around K{N fraction of
řN
i“1 ESr rNis “ KT ) because S P SK is of size K. However, a bandit assortment selection

algorithm, with knowledge of S, could potentially allocate its assortment selections so that rNi

becomes significantly larger for i P S than i R S. To overcome such difficulties, we use an
analysis similar to the proof of Theorem 3.5 in (Bubeck & Cesa-Bianchi, 2012) to exploit the
řN
i“1 ESr rNis “ NK property and Pinsker’s inequality (Tsybakov, 2009) to bound the discrep-

ancy in expectations under different parameterization.
Let SpiqK´1 “ SK´1 X tS Ď rN s : i R Su be all subsets of size K ´ 1 that do not include i.

Re-arranging summation order we have

1

|SK |
ÿ

SPSK

1

K

ÿ

iPS

ESr rNis “
1

K

N
ÿ

i“1

1

|SK |
ÿ

SPSK ,iPS
ESr rNis

“
1

K

N
ÿ

i“1

1

|SK |
ÿ

S1PSpiqK´1

ES1Ytiur rNis. (4.83)

Denote P “ PS1 and Q “ PS1Ytiu. Also note that 0 ď rNi ď T almost surely under both P and
Q. Using Pinsker’s inequality we have that

ˇ

ˇEP r rNis ´ EQr rNis
ˇ

ˇ ď

T
ÿ

j“0

j ¨
ˇ

ˇP r rNi “ js ´Qr rNi “ js
ˇ

ˇ
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ď T ¨
T
ÿ

j“0

ˇ

ˇP r rNi “ js ´Qr rNi “ js
ˇ

ˇ

ď T ¨ }P ´Q}TV ď T ¨

c

1

2
KLpP }Qq.

Here }P ´Q}TV “ supA |P pAq ´QpAq| and KLpP }Qq “
ş

plog dP {dQqdP are the total varia-
tion and the Kullback-Leibler (KL) divergence between P and Q, respectively. Subsequently,

1

|SK |
ÿ

SPSK

1

K

ÿ

iPS

ESr rNis

ď
1

K

N
ÿ

i“1

1

|SK |
ÿ

S1PSpiqK´1

˜

ES1r rNis ` T

c

1

2
KLpPS1}PS1Ytiuq

¸

. (4.84)

The first term on the right-hand side of Eq. (4.120) is easily bounded:

1

K

N
ÿ

i“1

1

|SK |
ÿ

S1PSpiqK´1

ES1r rNis “
1

|SK |
ÿ

S1PSK´1

1

K

ÿ

iRS1

ES1r rNis

ď
1

|SK |
ÿ

S1PSK´1

1

K

N
ÿ

i“1

ES1r rNis

“
|SK´1|

K|SK |
¨ TK “

`

N
K´1

˘

K
`

N
K

˘ ¨ TK “
TK

N ´K ` 1
ď
T

3
. (4.85)

Here the last inequality holds because K ď N{4 and hence TK
N´K`1

ď TK
3K`1

ď T
3

. Combining
all inequalities we have that

max
SPSK

ES

«

T
ÿ

t“1

RvpS
˚
v q ´RvpStq

ff

ě
ε

9

¨

˝

2T

3
´

T

|SK |
ÿ

S1PSK´1

1

K

ÿ

iRS1

c

1

2
KLpPS1}PS1Ytiuq

˛

‚. (4.86)

It remains to bound the KL divergence between two “neighboring” parameterization θS1 and
θS1Ytiu for all S 1 P SK´1 and i R S 1, which we elaborate in the next section.

KL-divergence between assortment selections

Define Ni :“
řT
t“1 Iri P Sts. Note that because St Ď rSt, we have Ni ď rNi almost surely and

hence
řN
i“1 ESrNis ď

řN
i“1 ESr rNis “ TK for all S Ď rN s.

Lemma 70. Suppose ε P p0, 1{2s. For any S 1 P SK´1 and i R S 1, it holds that KLpPS1}PS1Ytiuq ď
ES1rNis ¨ 63ε2{K.
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Before proving Lemma 70 we first prove an upper bound on KL-divergence between cate-
gorical distributions.
Lemma 71. Suppose P is a categorical distribution with parameters p0, ¨ ¨ ¨ , pJ , meaning that
P pX “ jq “ pj for j “ 0, ¨ ¨ ¨ , J , andQ is a categorical distribution with parameters q0, ¨ ¨ ¨ , qJ .
Suppose also pj “ qj ` εj for all j “ 0, ¨ ¨ ¨ , J . Then

KLpP }Qq ď
J
ÿ

j“0

ε2
j

qj
.

Proof. We have that

KLpP }Qq “
J
ÿ

j“0

pqj ` εjq log
qj ` εj
qj

paq

ď

J
ÿ

j“0

pqj ` εjq
εj
qj

pbq
“

J
ÿ

j“0

ε2
j

qj
.

Here (a) holds because logp1` xq ď x for all x ą ´1 and (b) holds because
řJ
j“0 εj “ 0.

We are now ready to prove Lemma 70.

Proof. It is clear that for any St Ď rN s, |St| ď K such that i R St, we have KLpPS1p¨|Stq}PS1Ytiup¨|Stqq “
0. Therefore, we shall focus only on those St Ď rN s with i P St, which happens for ES1rNis

epochs in expectation. Define K 1 :“ |St| ď K and J :“ |St X S 1| ď K ´ 1. Re-write the
probability of it “ j as pj “ vj{pa ` Jε{Kq and qj “ vj{pa ` pJ ` 1qε{Kq under PS1 and
PS1Ytiu, respectively, where a “ 1`K 1{K P p1, 2s. We then have that

ˇ

ˇp0 ´ q0

ˇ

ˇ “

ˇ

ˇ

ˇ

ˇ

1

a` Jε{K
´

1

a` pJ ` 1qε{K

ˇ

ˇ

ˇ

ˇ

ď
ε

K
;

ˇ

ˇpj ´ qj
ˇ

ˇ ď
1` ε

K

ˇ

ˇ

ˇ

ˇ

1

a` Jε{K
´

1

a` pJ ` 1qε{K

ˇ

ˇ

ˇ

ˇ

ď
2ε

K2
,

if 1 ď j ď N, j ‰ i;

ˇ

ˇpj ´ qj
ˇ

ˇ ď

ˇ

ˇ

ˇ

ˇ

1

K

1

a` Jε{K
´

1` ε

K

1

a` pJ ` 1qε{K

ˇ

ˇ

ˇ

ˇ

ď
ε

K

1

a` pJ ` 1qε{K
`

1

K

ˇ

ˇ

ˇ

ˇ

1

a` Jε{K
´

1

a` pJ ` 1qε{K

ˇ

ˇ

ˇ

ˇ

ď
ε

K
`

1

K
¨
ε

K
ď

ε

K2
`

ε

K
ď

4ε

K
, if j “ i.
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Note that q0 ě 1{3 and qj ě 1{p3Kq for j ě 1, because ε P p0, 1{2s, a P p1, 2s and
J ď K ´ 1. Invoking Lemma 71 we have that

KLpPS1p¨|Stq}PS1Ytiup¨|Stqq ď
3ε2

K2
` 3K ¨

4Jε2

K4
` 3K ¨

16ε2

K2

ď
3ε2

K2
`

12ε2

K2
`

48ε2

K
ď

63ε2

K
.

Putting everything together

Using Hölder’s inequality, we have that

T

|SK |
ÿ

S1PSK´1

1

K

ÿ

iRS1

c

1

2
KLpPS1}PS1Ytiuq

ď
T |SK´1|

K|SK |
¨ max
S1PSK´1

ÿ

iRS1

c

1

2
KLpPS1}PS1Ytiuq

“ max
S1PSK´1

T

N ´K ` 1

ÿ

iRS1

c

1

2
KLpPS1}PS1Ytiuq.

By Jensen’s inequality and the concavity of the square root, we have

1

N ´K ` 1

ÿ

iRS1

c

1

2
KLpPS1}PS1Ytiuq

ď

d

1

2pN ´K ` 1q

ÿ

iRS1

KLpPS1}PS1Ytiuq.

Invoking Lemma 70, we obtain

1

N ´K ` 1

ÿ

iRS1

KLpPS1}PS1Ytiuq ď
1

N ´K ` 1

ÿ

iRS1

ES1rNis ¨
63ε2

K

ď
63ε2

KpN ´K ` 1q

N
ÿ

i“1

ES1rNis

ď
126ε2

NK
¨ TK “

126Tε2

N
.

Subsequently, setting ε “ mint0.05
a

N{T , 0.5u the term inside the bracket on the right-hand
side of Eq. (4.86) can be lower bounded by T {3. The overall regret is thus lower bounded by
εT {27 ě mint0.001

?
NT, T {54u. Theorem 16 is thus proved.
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4.6 Proofs of results in Sec. 4.2

4.6.1 Proof of Theorem 17

The following lemma is the key step in our proof of Theorem 17, which shows that the estimates
pφi,θ, pui,θ concentrate around the true values φi,θ, ui,θ.
Lemma 72. Suppose T pi, θq ě 96 lnp2MTKq. With probability 1 ´ T´1 uniformly over all
i P rM s, θ P Ki and t P rT s

ˇ

ˇ

pui,θ ´ ui,θ
ˇ

ˇ ď min

$

&

%

U,

d

96 maxppui,θ, pu2
i,θq lnp2MTKq

T pi, θq
`

144 lnp2MTKq

T pi, θq

,

.

-

; (4.87)

ˇ

ˇpφi,θ ´ φi,θ
ˇ

ˇ ď min

#

1,

d

lnp2MTKq

T pi, θqpui,θ

+

. (4.88)

The following corollary is an immediate consequence of Lemma 72:
Corollary 7. With probability 1´T´1, ui,θ ě ui,θ and φi,θ ě φi,θ for all i P rM s, θ P K1ˆ¨ ¨ ¨ˆ

KM .
Corollary 7 shows that (with high probability) ui,θ and φi,θ are valid upper bounds for ui,θ

and φi,θ. Our next corollary shows that R
1

is also an upper bound for R1 at maximizers of R
1

and R. Recall that R
1
pθq “ r

řM
i“1 φi,θiui,θis{r1 `

řM
i“1 ui,θis and R1pθq “ r

řM
i“1 φi,θiui,θis{r1 `

řM
i“1 ui,θis.

Corollary 8. With probability 1 ´ T´1, R
1
ppθq ě Rppθq and R

1
pθ˚q ě R1pθ˚q, where pθ, θ˚ P

K1 ˆ ¨ ¨ ¨ ˆKM are maximizers of R
1
and R1, respectively.

We now return to the proof of Theorem 17. The first step is to use the classical regret decom-
position for UCB-type policies (A denotes the success event in Corollary 8).

RegretptpθptquTt“1q “ E
T
ÿ

t“1

R1pθ˚q ´R1pθptqq

ď E

«

T
ÿ

t“1

R1pθ˚q ´R1pθptqq

ˇ

ˇ

ˇ

ˇ

A

ff

PrrAs `OpT q ¨ PrrAcs

ď Op1q ` E

«

T
ÿ

t“1

R
1
pθ˚q ´R

1
pθptqq `R

1
pθptqq ´R1pθptqq

ˇ

ˇ

ˇ

ˇ

A

ff

(4.89)

ď Op1q ` E

«

T
ÿ

t“1

R
1
pθptqq ´R1pθptqq

ˇ

ˇ

ˇ

ˇ

A

ff

. (4.90)

“ Op1q ` E

«

ÿ

τ

|Eτ | ¨ pR
1
ppθpτqq ´R1ppθpτqqq

ˇ

ˇ

ˇ

ˇ

A

ff

. (4.91)
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Here, pθpτq denotes any θptq in the τ -th epoch Eτ 4. We also note that Eq. (4.89) holds because
PrrAcs ď T´1 and R

1
pθ˚q ě R1pθ˚q, and Eq. (4.90) holds because R

1
pθptqq ě R

1
pθ˚q, since θptq

is the maximizer of R
1
at time t.

It remains to upper bound the discrepancy between R
1
ppθpτqq and R1ppθpτqq at every epoch

τ . This is accomplished by the following “aggregation lemma”, which is proved in the online
supplement.
Lemma 73. With probability 1 ´ T´1, for all t P rT s, i P rM s and θ “ pθ1, ¨ ¨ ¨ , θMq P
K1 ˆ ¨ ¨ ¨ ˆKM ,

ˇ

ˇR
1
pθq ´R1pθq

ˇ

ˇ ď
1

1`
řM
i“1 ui,θi

«

M
ÿ

i“1

ui,θi ´ ui,θi
1` ui,θi

`

M
ÿ

i“1

ui,θipφi,θi ´ φi,θiq

ff

. (4.92)

Note that E|Eτ | “ 1`
řM
i“1 Erpni,τ s “ 1`

řM
i“1 ui,θi . Combining Lemma 73 with Eq. (4.91)

we obtain

RegretptpθptquTt“1q ď Op1q `
ÿ

τ

E

«

M
ÿ

i“1

u
i,pθ
pτq
i
´ u

i,pθ
pτq
i

1` u
i,pθ
pτq
i

`

M
ÿ

i“1

u
i,pθ
pτq
i
pφ

i,pθ
pτq
i
´ φ

i,pθ
pτq
i
q

ˇ

ˇ

ˇ

ˇ

A

ff

. (4.93)

The following lemmas upper bound (asymptotically) the two terms in Eq. (4.93) separately.
Lemma 74. Conditioned on event A, it holds that

ÿ

τ

M
ÿ

i“1

u
i,pθ
pτq
i
´ u

i,pθ
pτq
i

1` u
i,pθ
pτq
i

À
a

MKT logpMTKq `MKU log2
pMTKq. (4.94)

Lemma 75. Conditioned on event A, it holds that

ÿ

τ

M
ÿ

i“1

u
i,pθ
pτq
i
pφ

i,pθ
pτq
i
´ φ

i,pθ
pτq
i
q À

a

MKT logpMTKq `MKU log2
pMTKq. (4.95)

Combining both lemmas and Eq. (4.93), we complete the proof of Theorem 17.

Proof of Lemma 72 We first prove the upper bound on |pui,θ ´ ui,θ| for fixed i P rM s and
θ P Ki.

Case 1: ui,θ ď 1. Let δ ą 0 be a parameter to be specified later. Applying Lemma 94, we have

Pr r|pui,θ ´ ui,θ| ą δui,θs ď exp

"

´
nui,θδ

2

2p1` δq ˆ 4

*

` exp

"

´
nui,θδ

2

6ˆ 4

ˆ

3´
2δui,θ

2

˙*

ď exp

"

´
nui,θδ

2

16 maxp1, δq

*

` exp

"

´
nui,θδ

2

24
p3´ δui,θq

*

4Recall that in Algorithm 11, θptq does not change within the same epoch Eτ . We write pθpτq to highlight that pθpτq

is the maximizer of R
1

in the τ -th epoch (see Step 5 of Algorithm 11).
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Suppose in addition that δui,θ ď 2. Then

Pr r|pui,θ ´ ui,θ| ą δui,θs ď 2 exp

"

´
nui,θ mintδ, δ2u

24

*

Equating the right-hand side of the above inequality with 1{MKT 2 we have, we have

δ “ max

#
d

48 lnp2MTKq

ui,θT pi, θq
,
48 lnp2MTKq

ui,θT pi, θq

+

and applying the union bound over all i P rM s, θ P Ki and t P rT s, with probability 1´ T´1

ˇ

ˇ

pui,θ ´ ui,θ
ˇ

ˇ ď δui,θ ď

d

48ui,θ lnp2MTKq

T pi, θq
`

48 lnp2MTKq

T pi, θq
. (4.96)

Note that if T pi, θq ě 48 lnp2MTKq the condition δui,θ ď 2 is met. Replacing all occur-
rences of ui,θ in Eq. (4.96) by pui,θ and using the fact that

?
a` b ď

?
a`

?
b, we have

ˇ

ˇ

pui,θ ´ ui,θ
ˇ

ˇ ď

d

48pui,θ lnp2MTKq

T pi, θq
`

48 lnp2MTKq

T pi, θq
`

d

48|pui,θ ´ ui,θ| lnp2MTKq

T pi, θq

ď

d

48pui,θ lnp2MTKq

T pi, θq
`

48 lnp2MTKq

T pi, θq

`
48 lnp2MTKq

?
ui,θ

T pi, θq
`

48 lnp2MTKq

T pi, θq

d

48 lnp2MTKq

T pi, θq

ď

d

48pui,θ lnp2MTKq

T pi, θq
`

144 lnp2MTKq

T pi, θq
. (4.97)

Case 2: ui,θ ą 1. Let δ P p0, 1s be a parameter to be specified later. Applying Lemma 94, we
have

Pr r|pui,θ ´ ui,θ| ą δui,θs ď exp

#

´
T pi, θqu2

i,θδ
2

6ˆ 4u2
i,θ

ˆ

3´
2ui,θδ

2ˆ ui,θ

˙

+

` exp

#

´
T pi, θqu2

i,θδ
2

2ˆ 4u2
i,θ

+

ď 2 expt´T pi, θqδ2
{12u.

Equating the right-hand side of the above inequality with 1{MKT 2 we have

δ “

d

24 lnp2MTKq

T pi, θq
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and applying the union bound over all i P rM s, θ P Ki and t P rT s, with probability 1´ T´1,

ˇ

ˇ

pui,θ ´ ui,θ
ˇ

ˇ ď δui,θ ď

d

24u2
i,θ lnp2MTKq

T pi, θq
. (4.98)

Note that δ ď 1 holds if T pi, θq ě 24 lnp2MTKq. In addition, if T pi, θq ě 96 lnp2MTKq
we have |pui,θ ´ ui,θ| ď 0.5ui,θ and hence pui,θ ě 0.5ui,θ. Subsequently, Eq. (4.98) implies

ˇ

ˇ

pui,θ ´ ui,θ
ˇ

ˇ ď

d

96pu2
i,θ lnp2MTKq

T pi, θq
. (4.99)

Finally, combining Eqs. (4.97,4.99) we proved the upper bound on |pui,θ ´ ui,θ|.
We next prove the upper bound on |pφi,θ ´ φi,θ|. Recall that for each τ P T pi, θq, prik is the

sum of pnik i.i.d. random variables with mean φi,θ and within range r0, 1s almost surely. Also note
that

ř

τ 1PT pi,θq pni,k “ T pi, θqpui,θ. Applying Hoeffding’s inequality (Lemma 89) we have for any
δ ą 0 that

Pr
”

ˇ

ˇpφi,θ ´ φi,θ
ˇ

ˇ ą δ
ı

ď 2 exp
 

´2δ2
¨ T pi, θqpui,θ

(

.

Equating the right-hand side of the above inequality with 1{MpK ` 1qT 2 and applying the
union bound, we have with probability 1´ T´1 uniformly over i P rM s, θ P Ki and t P rT s that

ˇ

ˇpφi,θ ´ φi,θ
ˇ

ˇ ď

d

lnp2MTKq

T pi, θqpui,θ
. (4.100)

Proof of Corollary 8 We first prove R
1
ppθq ě R1ppθq. By definition,

řM
i“1pφi,pθi ´ R

1
ppθqqui,pθi “

R
1
ppθq. In addition, because R

1
ppθq is the maximizer of R

1
, setting λ “ R

1
ppθq and by the second

property of Lemma 58 we know that ψλppθq “ λ and ψλpθq ď λ for all θ P K1ˆ¨ ¨ ¨ˆKM , where
ψλpθq “

řM
i“1pφi,θi ´ λqui,θi .

We claim that φi,pθi ě R
1
pθq whenever ui,pθi ą 0. Assume the contrary, that φi,pθi ă R

1
pθq “ λ

and ui,pθi ą 0 for some i P rM s. Consider pθ1 “ ppθ11, ¨ ¨ ¨ ,
pθ1Mq defined as pθ1i “ 8 and pθ1i1 “

pθi1

for all i1 ‰ i. Because pθ1i “ 8 we know that ui,pθ1i “ ui,pθ1i
“ 0. Subsequently, ψλppθ1q “

ψλppθq ´ pφi,pθi ´ λqui,pθi ą ψλppθq “ λ. This contradicts the condition that ψλpθq ď λ for all
θ P K1 ˆ ¨ ¨ ¨ ˆKM .

Define ψ0
λpθq :“

řM
i“1pφi,θi ´ λqui,θi , which is similar to the definition of ψλ except all oc-

currences of φi,¨ and ui,¨ are replaced by their true values φi,¨, ui,¨. Because φi,pθi ě R
1
ppθq for all

ui,θi ą 0, and φi¨, ui¨ are upper bounds of φi¨, ui¨, we conclude that ψ0
λp
pθq ď ψλppθq “ λ, imply-

ing that
řM
i“1pφi,pθi ´ λqui,pθi ď λ. Re-arranging terms we have R1ppθq “ r

řM
i“1 φi,pθiui,pθis{r1 `

řM
i“1 ui,pθis ď λ “ R

1
ppθq.

We next prove R
1
pθ˚q ě R1pθ˚q. Recall that R1pθ˚q “ r

řM
i“1 φi,θ˚i ui,θ˚i s{r1 `

řM
i“1 ui,θ˚i s.

Hence, ψ0
λpθ

˚q “ λ for λ “ R1pθ˚q, meaning that
řM
i“1pφi,θ˚i ´ λqui,θ˚i “ λ. By similar analysis,

we know that φi,θ˚i ě λ for all ui,θ˚i ą 0 too. Because φi¨, ui,¨ are upper bounds of φi¨, ui¨ and
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ui,θ˚i “ 0 if ui,θ˚i “ 0, we have ψλpθ˚q “
řM
i“1pφi,θ˚i ´ λqui,θ˚i ě

řM
i“1pφi,θ˚i ´ λqui,θ˚i “

ψ0
λpθ

˚q “ λ. This implies that
řM
i“1pφi,θ˚i ´ R1pθ˚qqui,θ˚i ě R1pθ˚q, and therefore R

1
pθ˚q “

r
řM
i“1 φi,θ˚i ui,θ

˚
i
s{r1`

řM
i“1 ui,θ˚i s ě R1pθ˚q.

Proof of Lemma 73 To simplify notations, we shall abbreviation φi “ φi,θi , ui “ ui,θi and
φi “ φi,θi , ui “ ui,θi . We also abbreviate R1 “ R1pθq and R

1
“ R

1
pθq.

By definition of R1 and R
1
, we have

˜

1`
M
ÿ

i“1

ui

¸

rR
1
´R1s “

˜

1`
M
ÿ

i“1

ui

¸«

řM
i“1 uiφi

1`
řM
i“1 ui

´

řM
i“1 uiφi

1`
řM
i“1 ui

ff

“

M
ÿ

i“1

φi

˜

ui
1`

řM
i1“1 ui1

1`
řM
i1“1 ui1

´ ui

¸

`

M
ÿ

i“1

uipφi ´ φiq

ď

M
ÿ

i“1

˜

ui
1`

řM
i1“1 ui1

1`
řM
i1“1 ui1

´ ui

¸

`

M
ÿ

i“1

uipφi ´ φiq (4.101)

The first term on the right-hand side of Eq. (4.101) can be further upper bounded by

M
ÿ

i“1

ui
1`

řM
i1“1 ui1

1`
řM
i1“1 ui1

´ ui “

řM
i“1 uip1`

řM
i1“1 ui1q ´

řM
i“1 uip1`

řM
i1“1 ui1q

1`
řM
i“1 ui

ď

M
ÿ

i“1

ui ´ ui
1` ui

.

(4.102)

Here the last inequalities holds because the
řM
i,i1“1 uiui1 term cancels out, and 1 `

řM
i1“1 ui1 ě

1` ui ě 1` ui.

Proof of Lemma 74 Define Tτ pi, θq as the size of T pi, θq after epoch τ , and T0pi, θq as the final
size of T pi, θq when Algorithm 11 terminates (i.e., the total number of epochs in which singleton
θ P Ki was offered in nest i). Define also pu

pτq
i,θ to be the estimate of u

i,pθ
pτq
i

at epoch τ . Using
Lemma 72, the expectation of the first term in Eq. (4.93) can be upper bounded by,

ÿ

τ

M
ÿ

i“1

U ¨ 1tTτ pi, pθ
pτq
i q ă 96 lnp2MTKqu `

»

–

g

f

f

e

96 maxppu
pτq
i,θ , rpu

pτq
i,θ s

2q lnp2MTKq

Tτ pi, pθ
pτq
i q ¨ p1` u

pτq
i,θ q

2

`
144 lnp2MTKq

Tτ pi, pθ
pτq
i q

ff

¨ 1tTτ pi, pθ
pτq
i q ě 96 lnp2MTKqu

“

M
ÿ

i“1

ÿ

θPKi

T0pi,θq
ÿ

`“0

U ¨ 1t` ă 96 lnp2MTKqu `

»

–

d

96 maxppu
pτq
i,θ , rpu

pτq
i,θ s

2q lnp2MTKq

`p1` ui,θq2

`
144 lnp2MTKq

`



1t` ě 96 lnp2MTKqu
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À

M
ÿ

i“1

ÿ

θPKi

U logpMTKq `
b

ui,θT0pi, θq logpMTKq ` log T0pi, θq logpMTKq (4.103)

ďMKU log2
pMTKq `

M
ÿ

i“1

ÿ

θPKi

b

ui,θT0pi, θq logpMTKq. (4.104)

Here Eq. (4.103) holds by plugging in upper bounds on |pupτqi,θ ´ ui,θ| (Lemma 72) and noting
that, maxta, a2u{p1 ` aq2 À a,

ř

`ďT0pi,θq
`´1{2 À

a

T0pi, θq and
ř

`ďT0pi,θq
`´1 À log T0pi, θq

Eq. (4.104) holds by replacing log T0 with logpMTKq.
Applying Cauchy-Schwartz inequality and the fact that Erpni,τ s “ ui,θi , E|Eτ | “ 1`

řM
i“1 Erpni,τ s,

the summation term in (4.104) can be further bounded by

M
ÿ

i“1

ÿ

θPKi

b

ui,θT0pi, θq logpMTKq ď
a

M |K| ¨

g

f

f

e

N
ÿ

i“1

ÿ

θPKi

ui,θT0pi, θq logpMTKq

“
a

M |K| ¨

g

f

f

e

N
ÿ

i“1

ÿ

θPKi

ÿ

τPT pi,θq

Erpni,τ s logpMTKq

ď
a

M |K| ¨
c

ÿ

τ

Er|Eτ |s logpMTKq

“
a

MKT logpMTKq.

Subsequently,

ÿ

τ

M
ÿ

i“1

u
i,pθ
pτq
i
´ u

i,pθ
pτq
i

1` u
i,pθ
pτq
i

À
a

MKT logpMTKq `MKU log2
pMTKq.

Proof of Lemma 75 We first state the following result is a corollary of Lemma 72 which gives
a lower bound (with high probability) on T pi, θqpui,θ when ui,θ is not too small. Its proof is given
at the end of this section.
Corollary 9. With probability 1´T´1 for all i P rM s, θ P Ki such that ui,θ ě 768 lnp2MTKq{T pi, θq
and T pi, θq ě 96 lnp2MTKq, we have T pi, θqpui,θ ě 0.5T pi, θqui,θ.

Proof. First consider the case of ui,θ ě 1. By Eq. (4.98) in the proof of Lemma 72, if T pi, θq ě
96 lnp2MTKq we have |pui,θ ´ ui,θ| ď 0.5ui,θ and therefore T pi, θqpui,θ ě 0.5T pi, θqui,θ.

In the rest of the proof we consider the case of 768 lnp2MTKq{T pi, θq ď ui,θ ď 1. By
Eq. (4.96) in the proof of Lemma 72, we have

T pi, θqpui,θ ě T pi, θqui,θ ´
b

48T pi, θqui,θ lnp2MTKq ´ 48 lnp2MTKq.

Under the condition that ui,θ ě 768 lnp2MTKq{T pi, θq, the above inequality yields T pi, θqpui,θ ě
0.5T pi, θqui,θ.
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Combining Corollary 9 with Lemma 72 and noting that |φi,θ ´ φi,θ| ď 1 always holds, the
second term on the right-hand side of Eq. (4.93) can be upper bounded by

M
ÿ

i“1

ÿ

θPKi

T0pi,θq
ÿ

`“0

U1t` ă 96 lnp2MTKqu `

„

768 lnp2MTKq

`

`ui,θ

d

2 lnp2MTKq

T pi, θqui,θ

ff

¨ 1t` ě 96 lnp2MTKqu

À

M
ÿ

i“1

ÿ

θPKi

U logpMKT q `
b

ui,θT0pi, θq logpMKT q ` log T0pi, θq logpMKT q.

(4.105)

Using similar derivation as in Eq. (4.94), we have

ÿ

τ

M
ÿ

i“1

u
i,pθ
pτq
i
pφ

i,pθ
pτq
i
´ φ

i,pθ
pτq
i
q À

a

MKT logpMTKq `MKU log2
pMTKq.

4.6.2 Proof of Lemma 59

Let θ˚ “ pθ˚1 , ¨ ¨ ¨ , θ
˚
Mq P K1 ˆ ¨ ¨ ¨ ˆ KM be the assortment that maximizes R1. Define rθ˚i :“

tθ˚i {δu ¨ δ for all i P rM s and rθ˚ :“ prθ˚1 , ¨ ¨ ¨ ,
rθ˚Mq. It is easy to verify that rθ˚ P rKδ1 ˆ ¨ ¨ ¨ ˆ rKδM .

Therefore, it suffices to prove that R1prθ˚q ě R˚ ´ δ where R˚ “ R1pθ˚q.
To simplify notations, abbreviate Ri “ RipLipθ˚i qq, Vi “ VipLipθ˚i qq, rRi “ RipLiprθ˚i qq and

rVi “ VipLiprθ˚i qq, where Rip¨q and Vip¨q are defined in Eqs. (4.11,4.13). Denote also that xi :“
rVi ´ Vi. By definition of Ri and rRi, we have RiVi “

ř

rijěθ
˚
i
rijvij and rRi

rVi “
ř

rijěrθ˚i
rijvij .

Subsequently,
rRi
rVi “ RiVi `

ÿ

θ˚i ąrijě
rθ˚i

rijvij ě RiVi ` xipθ
˚
i ´ δq. (4.106)

Here the last inequality holds because |θ˚i ´ rθ˚| ď δ and
ř

θ˚i ąrijě
rθ˚i
vij “ rVi ´ Vi “ xi.

Subsequently,

rV γi
i

”

rRi ´ pR
˚
´ δq

ı

“ pVi ` xiq
γi
”

rRi ´ pR
˚
´ δq

ı

(4.107)

ě pVi ` xiq
γi

„

RiVi ` xipθ
˚
i ´ δq

Vi ` xi
´R˚ ` δ



(4.108)

ě pVi ` xiq
γi

„

RiVi ` xi, θ
˚
i

Vi ` xi
´R˚



. (4.109)

Here in Eq. (4.108) we apply Eq. (4.106), and Eq. (4.109) holds because xi{pVi ` xiq ď 1.
Proposition 19. For i P rM s define function hip∆q :“ pVi`∆qγirpRiVi`∆θ˚i q{pVi`∆q´R˚s.
Then hi is monotonically non-decreasing in ∆ for ∆ ě 0.
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Proof. Note that hip∆q “ pVi ` ∆qγi´1pRiVi ` ∆θ˚i q ´ pVi ` ∆qγiR˚. Differentiating hi with
respect to ∆ we have

h1ip∆q “ pγi ´ 1qpVi `∆qγi´2
pRiVi `∆θ˚i q ` θ

˚
i pVi `∆qγi´1

´ γipVi `∆qγi´1R˚. (4.110)

Using the second property of Lemma 56 that θ˚i ě γiR
˚`p1´γiqRipS

˚
i q, we have for all ∆ ě 0

that

h1ip∆q ě pγi ´ 1qpVi `∆qγi´2
pRiVi `∆θ˚i q ` rγiR

˚
` p1´ γiqRis pVi `∆qγi´1

´ γipVi `∆qγi´1R˚ (4.111)
“ p1´ γiqpVi `∆qγi´2

rRipVi `∆q ´RiVi ´∆θ˚i s (4.112)
“ p1´ γiqpVi `∆qγi´2

¨ pRi ´ θ
˚
i q∆ ě 0. (4.113)

The proposition is then proved, because h1ip∆q ě 0 for all ∆ ě 0.

Invoking Proposition 19, we have that for all i P rM s,

rV γi
i

”

rRi ´ pR
˚
´ δq

ı

ě pVi ` xiq
γi

„

RiVi ` xi, θ
˚
i

Vi ` xi
´R˚



ě V γi
i rRi ´R

˚
s . (4.114)

Summing over i P rM s on both sides of the above inequality and using the definition that R˚ “
p
ř

iPrMsRiV
γi
i q{p1`

ř

iPrMs V
γi
i q,

ÿ

iPrMs

rV γi
i

”

rRi ´ pR
˚
´ δq

ı

ě
ÿ

iPrMs

RiV
γi
i ´

¨

˝

ÿ

iPrMs

V γi
i

˛

‚R˚ “ R˚ ě R˚ ´ δ. (4.115)

Re-organizing terms we have

R1prθ˚q “

řM
i“1 φi,rθ˚i

ui,rθ˚i
1`

řM
i“1 ui,rθ˚i

“

ř

iPrMsRipLiprθ˚i qqVipLiprθ˚i qqγi

1`
ř

iPrMs VipLiprθ˚i qqγi
“

ř

iPrMs
rRi
rV γi
i

1`
ř

iPrMs
rV γi
i

ě R˚ ´ δ,

which completes the proof.

4.6.3 Proof of Theorem 18
Construction of adversarial model parameters

Let ε ą 0 be a small positive parameter depending on M and T , which will be specified later.
Each nest i P rM s in our construction consists of N “ 3 items and is classified into two cate-
gories: “Type A” and “Type B”, with parameter configurations detailed in Table 4.3. Note that
regardless of which type of nest i P rM s is, the three items in nest i have revenue parameters
p1 ` εq{M2, p1 ´ εq{M2 and 1{M2. Hence it is impossible to decide the type of a nest without
observations of customers’ purchasing actions. Given the model parameters in Table 4.3, it is
easy to verify that for a Type A nest, the optimal assortment is t1, 2u, while for a Type B nest,
the optimal assortment is t1, 2, 3u.

The following lemma shows that any assortment Si that does not equal t1, 2u for Type A
nests or t1, 2, 3u for Type B nests incurs an Ωpε{Mq regret. It is proved in the supplementary
material.
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Table 4.3: Adversarial construction of two types of nests. The revenue parameter ρ is set to
ρ “ 9

?
2{p1`

?
2q « 0.694774.

Type A Nest Type B Nest
Item 1 Item 2 Item 3 Item 1 Item 2 Item 3

Revenues rij 1 0.8 ρ 1 0.8 ρ
Preferences vij p1` εq{M2 p1´ εq{M2 1{M2 p1´ εq{M2 p1` εq{M2 1{M2

Lemma 76. Let U Ď rM s be the set of Type A nests, and by construction rM szU are all Type B
nests. For any S “ pS1, ¨ ¨ ¨ , SMq P rN s

M , definem7

UpSq :“
ř

iPU 1tSi ‰ t1, 2uu`
ř

iRU 1tSi ‰
t1, 2, 3uu. Then there exists a numerical constant C ą 0 such that for all S, RpS˚q ´ RpSq ě
m7

UpSq ¨ Cε{M , where S˚ P arg maxS RpSq is the optimal assortment combination under U .

Reduction to average-case regret

Recall that for any policy π, we want to show a lower bound on the worst-case regret

sup
trij ,viju

T
ÿ

t“1

R˚ ´ Eπ
“

RpSptqq
‰

. (4.116)

Let M0 “ M{4 be an integer (because M is divisible by 4) and SM0 be all
`

M
M0

˘

subsets
of rM s with size M0. Recall that in our adversarial construction, U Ď rM s denotes the set of
all Type A nests and the remaining nests rM szU are Type B. The following inequalities show a
reduction to average-case regret:

sup
trij ,viju

T
ÿ

t“1

R˚´Eπ
“

RpSptqq
‰

ě sup
UPSM0

T
ÿ

t“1

R˚´EπU
“

RpSptqq
‰

ě
1

|SM0 |

ÿ

UPSM0

T
ÿ

t“1

R˚´EπU
“

RpSptqq
‰

.

(4.117)
Here we use the EπU notation to emphasize that the distribution of tSptqu (and hence the expec-
tation) depends on both the parameter setting (uniquely determined by the set of Type A nests
U Ď rM s) and the policy π itself.

For any i P rM s and S Ď rN s, denote nSpiq :“
řT
t“1 1tS

ptq
i “ Su as the random variable of

the number of times assortment S is offered in nest i. Let EπU rnSpiqs be the expectation of nSpiq,
with expectation taken under model parameters setting U (recall that U is the set of all Type A
nests) and policy π. Invoking Lemma 76 and noting that

řM
i“1

ř

SĎrNs EπU rnSpiqs “MT for any
U Ď rM s and policy π, the right-hand side of Eq. (4.117) can be lower bounded by,

1

|SM0 |

ÿ

UPSM0

T
ÿ

t“1

Eπ
„

m7

UpS
ptq
q ¨
Cε

M



“
Cε

M
¨

1

|SM0 |

ÿ

UPSM0

»

–

ÿ

iPU

ÿ

S‰t1,2u

EπU rnSpiqs `
ÿ

iRU

ÿ

S‰t1,2,3u

EπU rnSpiqs

fi

fl
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“
Cε

M

¨

˝MT ´
1

|SM0 |

ÿ

UPSM0

«

ÿ

iPU

EπU rnt1,2upiqs `
ÿ

iRU

EπU rnt1,2,3upiqs

ff

˛

‚

“
Cε

M

¨

˝MT ´
1

|SM0 |

ÿ

UPSM0

«

ÿ

iPU

EπU rnt1,2upiqs `
ÿ

iPU

EπUcrnt1,2,3upiqs

ff

˛

‚. (4.118)

Here in the last identity we replace U in the second summation (corresponding to nt1,2,3upiq with
U c :“ rM szU ).

To obtain a tight lower bound on the right-hand side of (4.118), we restructure it by consid-
ering subsets U 1 Ď rM s with size M0 ´ 1, which facilitates the use of a KL divergence bound
between the probability law with the Type A nests U 1 Ď rM s and that with the Type A nests
U “ U 1 Y tiu (see Lemma 77 in the next subsection). More specifically, let SM0´1 be the col-
lection of all

`

M
M0´1

˘

subsets of rM s with size M0 ´ 1, and SpiqM0´1 :“ tU P SM0´1 : i R Uu be
a subset of SM0´1 excluding the ith nest. By swapping summation orders, Eq. (4.118) can be
equivalently written as

Cε

M

¨

˚

˝

MT ´
1

|SM0 |

M
ÿ

i“1

ÿ

U 1PSpiqM0´1

EπU 1Ytiurnt1,2upiqs ` EpU 1Ytiuqcrnt1,2,3upiqs

˛

‹

‚

“ Cε ¨ T ´
Cε

|SM0 |

ÿ

U 1PSM0´1

1

M

ÿ

iRU 1

`

EπU 1Ytiurnt1,2upiqs ` EpU 1Ytiuqcrnt1,2,3upiqs
˘

. (4.119)

Pinsker’s inequality

We upper bound EU 1Ytiurnt1,2upiqs and EpU 1Ytiuqcrnt1,2,3upiqs by comparing them with EU 1rnt1,2upiqs
and EpU 1qcrnt1,2,3upiqs. In particular, let P π

U denote the probabilistic law under U and policy π.
Then for any S Ď rN s,

ˇ

ˇEπU rnSpiqs ´ EπW rnSpiqs
ˇ

ˇ ď

T
ÿ

j“0

j ¨
ˇ

ˇP π
U rnSpiq “ js ´ P π

W rnSpiq “ js
ˇ

ˇ

ď T ¨
T
ÿ

j“0

ˇ

ˇP π
U rnSpiq “ js ´ P π

W rnSpiq “ js
ˇ

ˇ

“ T }P π
U ´ P

π
W }TV ď T

c

1

2
mintKLpP π

U }P
π
W q,KLpP π

W }P
π
U qu (4.120)

ď T

c

T

2
mintmax

S
KLpPUp¨|Sq}PW p¨|Sqq,max

S
KLpPW p¨|Sq}PUp¨|Sqqu. (4.121)

Here }P ´Q}TV and KLpP ||Qq denote the total variational distance and Kullback-Leibler diver-
gence between two probability laws P and Q, Eq. (4.120) is known as the Pinsker’s inequality
(see e.g., Csiszar & Körner (2011); Tsybakov (2009)). Note that in the last term PU and PW do
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not have superscript π, because conditioned on a particular assortment combination S the KL
divergence no longer depends on π.

The following lemma shows that if U and W differ by only one nest, then the KL divergence
between PU and PW is small for all S “ pS1, ¨ ¨ ¨ , SMq.
Lemma 77. Suppose |U4W | “ 1, where U4W “ pUzW q Y pW zUq denotes the symmetric
difference between subsets U,W Ď rM s. Then there exists a constant C 1 ą 0 such that for any
S “ pS1, ¨ ¨ ¨ , SMq, mintKLpPUp¨|Sq}PW p¨|Sq,KLpPW p¨|Sq}PUp¨|Sqquq ď C 1ε2{M .

Invoking Lemma 77, the right-hand side of Eq. (4.121) can be further upper bounded by

T

c

T

2
¨
C 1ε2

M
À T

a

Tε2{M. (4.122)

Invoking Eq. (4.119) and noting that |SM0´1| “
`

M
M0´1

˘

“ M0

M´M0`1

`

M
M0

˘

ď |SM0 |{3 and
řM
i“1 EπU 1rnSpiqs ďMT for all U 1 Ď rM s and S Ď rN s, we have

1

|SM0 |

ÿ

UPSM0

T
ÿ

t“1

R˚ ´ EπU
“

RpSptqq
‰

ě Cε ¨ T ´
Cε

|SM0 |

ÿ

U 1PSM0´1

1

M

ÿ

iRU 1

`

EπU 1Ytiurnt1,2upiqs ` EpU 1Ytiuqcrnt1,2,3upiqs
˘

ě Cε ¨ T ´
Cε

3
sup

U 1PSM0´1

1

M

M
ÿ

i“1

`

EπU 1rnt1,2upiqs `
ˇ

ˇpEπU 1Ytiu ´ EπU 1qrnt1,2upiqs|
˘

`
`

EπpU 1qcrnt1,2,3upiqs `
ˇ

ˇpEπpU 1Ytiuqc ´ EπpU 1qcqrnt1,2,3upiqs|
˘

ě Cε ¨ T ´
Cε

3

˜

1

M
¨ 2MT `

1

M
¨M ¨O

˜

T

c

Tε2

M

¸¸

. (4.123)

Setting ε “ c0

a

M{T for some sufficiently small positive constant c0 ą 0, we complete the
proof of Theorem 18.

Proof of Lemma 76 For any U Ď rM s, S Ď t1, 2, 3u and S “ pS1, ¨ ¨ ¨ , SMq P r3s
M , define

m7

U,SpSq :“
ř

iPU 1tSi “ Su and similarly m7

Uc,SpSq :“
ř

iRU 1tSi “ Su. Denote also S˚ “
pS˚1 , ¨ ¨ ¨ , S

˚
Mq as the optimal assortment combination, in which Si “ t1, 2u for all i P U and

Si “ t1, 2, 3u for all i R U . Let also RUp¨q, VUp¨q, RUcp¨q, VUcp¨q be revenue and preference
of assortment selections in nests of Type A (RUp¨q and VUp¨q) or Type B (RUcp¨q and VUcp¨q),
respectively. Recall that |U | “M{4 and |U c| “ 3M{4. We then have

RpS˚q ´RpSq “
RUpt1, 2uqVUpt1, 2uq

1{2 ¨M{4`RUcpt1, 2, 3uqVUcpt1, 2, 3uq
1{2 ¨ 3M{4

1` VUpt1, 2uq1{2 ¨M{4` VUcpt1, 2, 3uq1{2 ¨ 3M{4

´

ř

SĎt1,2,3um
7

U,SpSq ¨RUpSqVUpSq
1{2 `m7

Uc,SpSq ¨RUcpSqVUcpSq
1{2

1`
ř

SĎt1,2,3um
7

U,SpSq ¨ VUpSq
1{2 `m7

Uc,SpSq ¨ VUcpSq
1{2

.

(4.124)
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We next list the values of VUp¨q, RUp¨q, VUcp¨q and RUcp¨q under our adversarial construction,
shown in Table 4.3.

S “ H : VUpSq
1{2
“ 0, RUpSq “ 0, VUcpSq

1{2
“ 0, RUcpSq “ 0;

S “ t1u : VUpSq
1{2
“

?
1` ε

M
, RUpSq “ 1, VUcpSq

1{2
“

?
1´ ε

M
, RUcpSq “ 1;

S “ t2u : VUpSq
1{2
“

?
1´ ε

M
, RUpSq “ 0.8, VUcpSq

1{2
“

?
1` ε

M
, RUcpSq “ 0.8;

S “ t3u : VUpSq
1{2
“

1

M
, RUpSq “ ρ, VUcpSq

1{2
“

1

M
, RUcpSq “ ρ;

S “ t1, 2u : VUpSq
1{2
“

?
2

M
, RUpSq “ .9` .1ε, VUcpSq

1{2
“

?
2

M
,RUcpSq “ .9´ .1ε

S “ t1, 3u : VUpSq
1{2
“

?
1` ε

M
, RUpSq “

1` ρ` ε

2` ε
,

VUcpSq
1{2
“

?
1´ ε

M
, RUcpSq “

1` ρ´ ε

2´ ε
;

S “ t2, 3u : VUpSq
1{2
“

?
1´ ε

M
, RUpSq “

.8` ρ´ .8ε

2´ ε
,

VUcpSq
1{2
“

?
1` ε

M
, RUcpSq “

.8` ρ` .8ε

2` ε
;

S “ t1, 2, 3u : VUpSq
1{2
“

?
3

M
, RUpSq “

1.8` ρ` .2ε

3
,

VUcpSq
1{2
“

?
3

M
, RUcpSq “

1.8` ρ´ .2ε

3
.

Plugging the values of VUp¨q, RUp¨q, VUcp¨q, RUcp¨q into RpS˚q ´ RpSq, and taking ε Ñ 0`,
by detailed algebraic calculations we proved the lemma.

Proof of Lemma 77 By symmetry we may assume without loss of generality that W “ U Y
ti0u for some i0 R U . The random variables observable are pi, jq where i P rM s Y t0u indicates
the nest in which a purchase is made (if no purchase is made then i “ 0) and j P rN s “ t1, 2, 3u
is the particular item purchased in nest i (if i “ 0 simply define j “ 0 with probability 1). The
KL divergence KLpPUp¨|Sq}PW p¨|Sqq can then be written as

KLpPUp¨|Sq}PW p¨|Sqq “ ´EU
„

log
PW pi, j|Sq

PUpi, j|Sq



“ ´EU
„

log
PW pi|Sq

PUpi|Sq



´ EU
„

log
PW pj|i, Sq

PUpj|i, Sq



.

(4.125)

We next upper bound the first term on the right-hand side of Eq. (4.125). By the nested
model, the nest-level purchase action i P rM s Y t0u follows a categorical distribution of M ` 1
categories, parameterized by probabilities p “ pp0, ¨ ¨ ¨ , pMq under U and q “ pq0, ¨ ¨ ¨ , qMq
under W . By elementary algebra (see for example Lemma 3 in (Chen & Wang, 2018)), KLpp}qq
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can be upper bounded as

KLpp}qq “ ´
M
ÿ

i“0

pi log
qi
pi
ď

M
ÿ

i“0

|pi ´ qi|
2

qi
.

Note that U and W only differ in nest i0. Using the nested model description and γi ” 0.5, it
is easy to verify that |pi ´ qi| À ε{M for i P t0, i0u, |pi ´ qi| À ε{M2 if i R t0, i0u, q0 Á Ωp1q
and qi Á 1{M for all i ě 1. Subsequently,

KLpp}qq À ε2{M. (4.126)

We proceed to upper bound the second term on the right-hand side of Eq. (4.125). Because
U and W only differ in nest i0, this term is non-zero only if i “ i0. Conditioned on i “ i0,
it is easy to verify that KLpPUp¨|i0, Si0q}PW p¨|i0, Si0qq À ε2 for all Si0 Ď rN s. In addition,
maxtPUpi0|Sq, PW pi0|Squ À 1{M . Subsequently,

´ EU
„

log
PW pj|i, Sq

PUpj|i, Sq



“ PUpi0|Sq ¨KLpPUp¨|i0, Si0q}PW p¨|i0, Si0qq À ε2{M. (4.127)

Combining Eqs. (4.126,4.127) we complete the proof of Lemma 77.

4.7 Proofs of results in Sec. 4.3

4.7.1 Proof of Theorem 17
The proof is divided into four steps. In the first step, we analyze the pilot estimator θ˚ obtained
from the pure exploration phase of Algorithm 13, and show as a corollary that the true model
θ0 is feasible to all subsequent local MLE formulations with high probability (see Corollary 10).
In the second step, we use an ε-net argument to analyze the estimation error of the local MLE.
Afterwards, we show in the third step that an upper bound on the estimation error pθt´1 ´ θ0

implies an upper bound on the estimation error of the expected revenue RtpSq, hence showing
that RtpSq are valid upper confidence bounds. Finally, we apply the elliptical potential lemma,
which also plays a key role in linear stochastic bandit and its variants, to complete our proof.

Analysis of pure exploration and the pilot estimator

Our first step is to establish an upper bound on the estimation error }θ˚´θ0}2 of the pilot estimator
θ˚, built using pure exploration data. It should be noted that in the pure exploration phase (t P
t1, ¨ ¨ ¨ , T0u), the assortments tStuT0t“1 only consist of one item. Therefore the observation model
reduces to a standard generalized linear model with the sigmoid function σpxq “ 1{p1` e´xq “
ex{p1 ` exq as the link function, which is essentially a logistic regression model of observing 1
if the customer makes a purchase.

Because the choice model in the pure exploration phase reduces to a generalized linear model,
we can cite existing works to upper bound the error }θ˚´θ0}2. In particular, the following lemma
is cited from (Li et al., 2017b, Eq. (18)), adapted to our model and parameter settings.
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Lemma 78. With probability 1´ δ it holds that

}θ˚ ´ θ0}2 ď
2

κ

d

d` logp1{δq

λminpV q
where κ “

1

2ep1` ρq
and V “

T0
ÿ

t“1

vt,itv
J
t,it . (4.128)

Proof. Because the noise in a logistic regression model is clearly centered and sub-Gaussian
with parameter at most 1{4, it only remains to check (Li et al., 2017b, Assumption 1), that
inf}x}2ď1,}θ´θ0}2ď1 σ

1pxJθq ě κ “ 2ep1 ` ρq where σpxq “ 1{p1 ` e´xq is the sigmoid link
function. Because σ1pxq “ σpxqp1 ´ σpxqq, we have σ1pxJθq “ ℘θp1 ´ ℘θq ě 0.5℘θ where
℘θ “ mintpθp1q, 1´ pθp1qu and pθp1q “ σpxJθq “ 1{p1` expt´xJθuq. By (A2), we know that
℘θ0 ě 1{p1` ρq. Subsequently, for any }x}2 ď 1 and }θ ´ θ0}2 ď 1, we have

℘θ “
1

1` expt´xJθu
“

1

1` expt´xJpθ ´ θ0qu expt´xJθ0u
ě

1

e

1

1` exptxJθ0u
ě

1

ep1` ρq
.

Lemma 78 is then an immediate consequence of (Li et al., 2017b, Eq. (18)).

The following corollary immediately follows Lemma 78, by lower bounding λminpV q using
standard matrix concentration inequalities.
Corollary 10. There exists a universal constant C0 ą 0 such that for arbitrary τ P p0, 1{2s, if
T0 ě C0 maxtν2d log T {λ2

0, ρ
2pd`log T q{pτ 2λ0qu then with probability 1´OpT´1q, }θ˚´θ0}2 ď

τ .

Proof. Denote Λ :“ EµxxJ and pΛ :“ V {T0 “
1
T0

řT0
t“1 xt,itx

J
t,it . Clearly EpΛ “ Λ. In addition,

because }vtj}2 ď ν almost surely, vtj are sub-Gaussian random variables with parameter ν2. By
standard concentration inequalities (see, e.g., (Vershynin, 2012, Proposition 2.1)), we have with
probability 1 ´ OpT´2q that }pΛ ´ Λ}op À ν

b

d log T
T0

. Hence, if T0 ě C0ν
2d log T {λ2

0 for some

sufficiently large universal constant C0, we have }pΛ ´ Λ}op ď 0.5λ0 “ λminpΛq and therefore
λminpV q “ T0λminppΛq ě 0.5T0λ0. The corollary then immediately follows Lemma 78.

The purpose of Corollary 10 is to establish a connection between the number of pure ex-
ploration iterations T0 and the critical radius τ used in the local MLE formulation. It shows a
lower bound on T0 in order for the estimation error }θ˚ ´ θ0}2 to be upper bounded by τ with
high probability, which certifies that the true model θ0 is also a feasible local estimator in our
MLE-UCB policy. This is an important property for later analysis of local MLE solutions pθt´1.

Analysis of the local MLE

The following lemma upper bounds a Mahalanobis distance between pθt and θ0. For convenience,
we adopt the notation that rt0 “ 0 and vt0 “ 0 for all t throughout this section. We also define

Itpθq :“
t
ÿ

t1“1

Mt1pθq, (4.129)

Mt1pθq :“ ´Eθ0,t1r∇2
θ log pθ,t1pj|St1qs
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“ Eθ0,t1rvt1jvJt1js ´ tEθ0,t1vt1jutEθ,t1vt1juJ ´ tEθ,t1vt1jutEθ0,t1vt1juJ ` tEθ,t1vt1jutEθ,t1vt1juJ

where Eθ,t1 denotes the expectation evaluated under the law j „ pθ,t1p¨|St1q; that is, pθ,t1pj|St1q “
exptvJt1jθu{p1`

ř

kPSt1
exptvJt1jθuq for j P St1 and pθ,t1pj|St1q “ 0 for j R St1 .

Lemma 79. Suppose τ ď 1{
a

8ρν2K2. Then there exists a universal constant C ą 0 such that
with probability 1´OpT´1q the following holds uniformly over all t “ T0, ¨ ¨ ¨ , T ´ 1:

ppθt ´ θ0q
JItpθ0qp

pθt ´ θ0q ď C ¨ d logpρνTKq. (4.130)

Remark 29. For θ “ θ0, the expression of Mt1pθq can be simplified as Mt1pθ0q “ Eθ0,t1rvt1jvJt1js´
tEθ0,t1vt1jutEθ0,t1vt1juJ.

We next state the proof of Lemma 79. For any θ P Rd define

ft1pθq :“ Eθ0,t1
„

log
pθ,t1pj|St1q

pθ0,t1pj|St1q



“
ÿ

jPSt1Yt0u

pθ0,t1pj|St1q log
pθ,t1pj|St1q

pθ0,t1pj|St1q
.

By simple algebra calculations, the first and second order derivatives of ft1 with respect to θ
can be computed as

∇θft1pθq “ Eθ0,t1rvt1js ´ Eθ,t1rvt1js; (4.131)

∇2
θft1pθq “ ´Eθ0,t1rvt1jvJt1js ` tEθ0,t1vt1jutEθ,t1vt1juJ

` tEθ,t1vt1jutEθ0,t1vt1juJ ´ tEθ,t1vt1jutEθ,t1vt1juJ. (4.132)

In the rest of the section we drop the subscript in∇θ,∇2
θ, and the∇,∇2 notations should always

be understood as with respect to θ.
Define Ftpθq :“

řt
t1“1 ft1pθq. It is easy to verify that ´Ftpθq is the Kullback-Leibler di-

vergence between the conditional distribution of pi1, ¨ ¨ ¨ , itq parameterized by θ and θ0, respec-
tively. Therefore, Ftpθq is always non-positive. Note also that Ftpθ0q “ 0, ∇Ftpθ0q “ 0,
∇2ft1pθq “ ´Mt1pθq and ∇2Ftpθq ” ´Itpθq. By Taylor expansion with Lagrangian remainder,
there exists θt “ αθ0 ` p1´ αqpθt for some α P p0, 1q such that

Ftppθtq “ ´
1

2
ppθt ´ θ0q

JItpθtqppθt ´ θ0q. (4.133)

Our next lemma shows that, if θt is close to θ0 (guaranteed by the constraint that }pθt´θ˚}2 ď
τ ), then Itpθtq can be spectrally lower bounded by Itpθ0q. It is proved in the supplementary
material.
Lemma 80. Suppose τ ď 1{

a

8ρν2K2. Then Itpθtq ľ 1
2
Itpθ0q for all t.

Proof. Because pθt is a feasible solution of the local MLE, we know }pθt ´ θ˚}2 ď τ . Also by
Corollary 10 we know that }θ˚ ´ θ0}2 ď τ with high probability. By triangle inequality and the
definition of θt we have that }θt ´ θ0}2 ď 2τ .
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To prove Itpθtq ľ 1
2
Itpθ0q we only need to show that Mt1pθtq ´Mt1pθ0q ĺ 1

2
Mt1pθ0q for all

1 ď t1 ď t. This reduces to proving

tEθt,t1vt1j ´ Eθ0,t1vt1jutEθt,t1vt1j ´ Eθ0,t1vt1juJ ĺ
1

2
Eθ0,t1

“

pvt1j ´ Eθ0,t1vt1jqpvt1j ´ Eθ0,t1vt1jqJ
‰

.

(4.134)
Fix arbitrary St1 Ď rN s, |St1 | “ J ď K and for convenience denote x1, ¨ ¨ ¨ , xJ P Rd

as the feature vectors of items in St1 (i.e., tvt1jujPSt1 ). Let also pθ0pjq and pθtpjq be the prob-
ability of choosing action j P rJs corresponding to xj parameterized by θ0 or θt. Define
x :“

řJ
j“1 pθ0pjqxj , wj :“ xj ´ x and δj :“ pθtpjq ´ pθ0pjq. Recall also that x0 “ 0 and

w0 “ ´x. Eq. (4.134) is then equivalent to

#

J
ÿ

j“0

δjwj

+#

J
ÿ

j“0

δjwj

+J

ĺ
1

2

J
ÿ

j“0

pθ0pjqwjw
J
j . (4.135)

LetL “ spantwju
J
j“0 andH P RLˆd be a whitening matrix such thatHp

ř

j pθ0pjqwjw
J
j qH

J “

ILˆL, where ILˆL is the identity matrix of sizeL. Denote rwj :“ Hwj . We then have
řJ
j“0 pθ0pjq rwj rw

J
j “

ILˆL. Eq. (4.135) is then equivalent to
›

›

›

›

›

J
ÿ

j“0

δj rwj

›

›

›

›

›

2

2

ď
1

2
. (4.136)

On the other hand, by (A2) we know that pθ0pjq ě 1{ρK for all j and therefore } rwj}2 ď
?
ρK

for all j. Subsequently, we have
›

›

›

›

›

J
ÿ

j“0

δj rwj

›

›

›

›

›

2

2

ď

˜

max
j
|δj| ¨

J
ÿ

j“0

} rwj}2

¸2

ď max
j
|δj|

2
¨ ρK2. (4.137)

Recall that δi “ pθtpiq ´ pθ0piq where pθpiq “ exptxJi θu{p1 `
ř

jPSt1
exptxJi θuq. Simple

algebra yields that ∇θpθpiq “ pθpiqrxi ´ Eθxjs, where Eθxj “
ř

jPSt1
pθpjqxj . Using the mean-

value theorem, there exists rθt “ rαθt ` p1´ rαqθ0 for some rα P p0, 1q such that

δi “ x∇θprθtpiq,
pθt ´ θ0y “ p

rθt
piqxxi ´ E

rθt
xj, θt ´ θ0y. (4.138)

Because }xti}2 ď ν almost surely for all t P rT s and i P rN s, we have

max
j
|δj|

2
¨ ρK2

ď 4 ¨max
i
}xi}

2
2 ¨ }θt ´ θ0}

2
2 ¨ ρK

2
ď 4ρν2K2

¨ τ 2. (4.139)

The lemma is then proved by plugging in the condition on τ .

As a corollary of Lemma 80, we have

Ftppθtq ď ´
1

4
ppθt ´ θ0q

JItpθ0qp
pθt ´ θ0q. (4.140)
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On the other hand, consider the “empirical” version pFtpθq :“
řt
t1“1

pft1pθq, where

pft1pθq :“ log
pθ,t1pit1 |St1q

pθ0,t1pit1 |St1q
. (4.141)

It is easy to verify that pFtpθ0q “ 0 remains true; in addition, for any fixed θ P Rd, t pFtpθqut
forms a martingale 5 and satisfies E pFtpθq “ Ftpθq for all t. This leads to our following lemma,
which upper bounds the uniform convergence of pFtpθq towards Ftpθq for all }θ ´ θ0} ď 2τ .
Lemma 81. Suppose τ ď 1{

a

8ρ2ν2K2. Then there exists a universal constant C ą 0 such
that with probability 1 ´ OpT´1q the following holds uniformly for all t P tT0 ` 1, ¨ ¨ ¨ , T u and
}θ ´ θ0}2 ď 2τ :

ˇ

ˇ pFtpθq ´ Ftpθq
ˇ

ˇ ď C
”

d logpρνTKq `
a

|Ftpθq|d logpρνTKq
ı

. (4.142)

Proof. We first consider a fixed θ P Rd, }θ ´ θ0}2 ď 2τ . Define

M :“ max
t1ďt

| pft1pθq| and V2 :“
t
ÿ

t1“1

Ej„θ0,t1
ˇ

ˇ

ˇ

ˇ

log
pθ,t1pj|St1q

pθ0,t1pj|St1q

ˇ

ˇ

ˇ

ˇ

2

. (4.143)

Using an Azuma-Bernstein type inequality (see, for example, (Fan et al., 2015, Theorem A),
(Freedman, 1975, Theorem (1.6))), we have

ˇ

ˇ pFtpθq ´ Ftpθq
ˇ

ˇ ÀM logp1{δq `
a

V2 logp1{δq with probability 1´ δ. (4.144)

The following lemma upper boundsM and V2 using Ftpθq and the fact that θ is close to θ0.
It will be proved right after this proof.

Lemma 82. If τ ď 1{
a

8ρ2ν2K2 thenM ď 1 and V2 ď 8|Ftpθq|.

Corollary 11. Suppose τ satisfies the condition in Lemma 82. Then for any }θ ´ θ0}2 ď 2τ ,
ˇ

ˇ pFtpθq ´ Ftpθq
ˇ

ˇ À logp1{δq `
a

|Ftpθq| logp1{δq with probability 1´ δ. (4.145)

Our next step is to construct an ε-net over tθ P Rd : }θ´θ0}2 ď 2τu and apply union bound on
the constructed ε-net. This together with a deterministic perturbation argument delivers uniform
concentration of pFtpθq towards Ftpθq.

For any ε ą 0, let Hpεq be a finite covering of tθ P Rd : }θ ´ θ0}2 ď 2τu in } ¨ }2 up
to precision ε. That is, sup}θ´θ0}2ď2τ minθ1PHpεq }θ ´ θ1}2 ď ε. By standard covering number
arguments (e.g., (van de Geer, 2000)), such a finite covering set Hpεq exists whose size can be
upper bounded by log |Hpεq| À d logpτ{εq. Subsequently, by Corollary 11 and the union bound,
we have with probability 1´OpT´1q that

ˇ

ˇ pFtpθq ´ Ftpθq
ˇ

ˇ À d logpT {εq `
a

|Ftpθq|d logpT {εq @T0 ă t ď T, θ P Hpεq. (4.146)

5tXkuk forms a martingale if ErXk`1|X1, ¨ ¨ ¨ , Xks “ Xk for all k.
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On the other hand, with probability 1 ´ OpT´1q such that Eq. (4.138) holds, we have for
arbitrary }θ ´ θ1}2 ď ε that

ˇ

ˇ pFtpθq ´ pFtpθ
1
q
ˇ

ˇ ď t ¨ sup
t1ďt,jPSt1Yt0u

ˇ

ˇ

ˇ

ˇ

log
pθ,t1pj|St1q

pθ1,t1pj|St1q

ˇ

ˇ

ˇ

ˇ

ď t ¨ sup
t1ďt,jPSt1Yt0u

|pθ,t1pj|St1q ´ pθ1,t1pj|St1q|

pθ1,t1pj|St1q
(4.147)

ď 2ρTK ¨ sup
t1ďt,jPSt1Yt0u

ˇ

ˇpθ,t1pj|St1q ´ pθ1,t1pj|St1q
ˇ

ˇ (4.148)

ď 2ρTK ¨ sup
t1ďt,jPrNs

4}vt1j}
2
2 ¨ }θ ´ θ

1
}2

À ρTK ¨ ν2
¨ ε. (4.149)

Here Eq. (4.147) holds because logp1 ` xq ď x; Eq. (4.148) holds because pθ1,t1pj|St1q ě
pθ0,t1pj|st1q ´ |pθ1,t1pj|St1q ´ pθ0,t1pj|St1q| ě 1{2ρK thanks to (A2) and Eq. (4.139).

Combining Eqs. (4.146,4.149) and setting ε — 1{pρν2TKq we have with probability 1 ´
OpT´1q that

ˇ

ˇ pFtpθq ´ Ftpθq
ˇ

ˇ À d logpρνTKq `
a

|Ftpθq|d logpρνTKq @T0 ă t ď T, }θ ´ θ0}2 ď 2τ,
(4.150)

which is to be demonstrated in Lemma 81.
In the rest of the proof we prove Lemma 82.We first derive an upper bound for M . By (A2),

we know that pθ0,t1pj|St1q ě 1{ρK for all j. Also, Eqs. (4.138,4.139) shows that |pθ,t1pj|St1q ´
pθ0,t1pj|St1q| ď 4ν2 ¨ τ 2. If τ 2 ď 1{

a

8ρν2K we have |pθ,t1pj|St1q´pθ0,t1pj|St1q| ď 0.5pθ0,t1pj|St1q

and therefore | pft1pθq| ď log2 2 ď 1.
We next give upper bounds on V2. Fix arbitrary t1, and for notational simplicity let pj “

pθ0,t1pj|St1q and qj “ pθ,t1pj|St1q. Because logp1` xq ď x for all x P p´1,8q, we have

Ej„θ0,t1
ˇ

ˇ

ˇ

ˇ

log
pθ,t1pj|St1q

pθ0,t1pj|St1q

ˇ

ˇ

ˇ

ˇ

2

“
ÿ

jPSt1Yt0u

pj log2

ˆ

1`
qj ´ pj
pj

˙

ď
ÿ

jPSt1Yt0u

pqj ´ pjq
2

pj
. (4.151)

On the other hand, by Taylor expansion we know that for any x P p´1,8q, there exists x P p0, xq
such that logp1` xq “ x´ x2{2p1` xq2. Subsequently,

´ft1pθq “ ´Ej„θ0,t1
„

log
pθ,t1pj|St1q

pθ0,t1pj|St1q



“ ´
ÿ

jPSt1Yt0u

pj log

ˆ

1`
qj ´ pj
pj

˙

(4.152)

“ ´
ÿ

jPSt1Yt0u

pj

ˆ

qj ´ pj
pj

´
1

2p1` δjq2
|qj ´ pj|

2

p2
j

˙

(4.153)

ě
1

2p1`maxj |pj ´ qj|{pjq2
¨

ÿ

jPSt1Yt0u

pqj ´ pjq
2

pj
. (4.154)

Here δj P p0, pqj ´ pjq{pjq and the last inequality holds because
ř

j pj “
ř

j qj “ 1.
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By Eqs. (4.138) and (4.139), we have that |qj ´ pj|
2 ď 4ν2 ¨ τ 2. In addition, (A2) implies

that pj ě 1{ρK for all j. Therefore, if τ ď 1{
a

4ρ2ν2K2 we have |pj ´ qj|{pj ď 1 for all j and
hence

Ej„θ0,t1
ˇ

ˇ

ˇ

ˇ

log
pθ,t1pj|St1q

pθ0,t1pj|St1q

ˇ

ˇ

ˇ

ˇ

2

ď
ÿ

jPSt1Yt0u

pqj ´ pjq
2

pj
ď 8|ft1pθq|. (4.155)

Summing over all t1 “ 1, ¨ ¨ ¨ , t and noting that ft1pθq is always non-positive, we complete the
proof of Lemma 82.

We are now ready to prove Lemma 79. By Eq. (4.142) and the fact that pFtppθtq ď 0 ď Ftppθtq,
we have

|Ftppθtq| ď | pFtppθtq ´ Ftppθtq| À d logpρνTKq `

b

|Ftppθtq|d logpρνTKq. (4.156)

Subsequently,
|Ftppθtq| À d logpρνNT q. (4.157)

In addition, because Ftppθtq ď 0, by Eq. (4.140) we have

´
1

2
ppθt ´ θ0q

JItpθ0qp
pθt ´ θ0q ě Ftppθtq ě d logpρνTKq. (4.158)

Lemma 79 is thus proved.

Analysis of upper confidence bounds

The following technical lemma shows that the upper confidence bounds constructed in Algorithm
13 are valid with high probability. Additionally, we establish an upper bound on the discrepancy
between RtpSq and the true value RtpSq defined in Eq. (4.27).
Lemma 83. Suppose τ satisfies the condition in Lemma 79. With probability 1 ´ OpT´1q the
following holds uniformly for all t ą T0 and S Ď rN s, |S| ď K such that

1. RtpSq ě RtpSq;

2. |RtpSq ´RtpSq| À mint1, ω

b

}I
´1{2
t´1 pθ0qMtpθ0|SqI

´1{2
t´1 pθ0q}opu.

At a higher level, the proof of Lemma 83 can be regarded as a “finite-sample” version of the
classical Delta’s method, which upper bounds estimation error of some functional ϕ of parame-
ters, i.e., |ϕppθt´1q ´ ϕpθ0q| using the estimation error of the parameters themselves pθt´1 ´ θ0.

We now state the proof of Lemma 83. Without explicit clarification, all statements are con-
ditioned on the success event in Lemma 79, which occurs with probability 1 ´ OpT´1q if τ is
sufficiently large and satisfies the condition in Lemma 79.

We present below a key technical lemma in the proof of Lemma 83, which is an upper bound
on the absolute value difference between RtpSq :“ Eθ0,trrtj|Ss and pRtpSq :“ E

pθt´1,t
rrtj|Ss

using It´1pθ0q and Mtpθ0|Sq, where It´1pθq “
řt´1
t1“1Mt1pθq and Mt1pθq “ Eθ0,t1rvt1jvJt1js ´

tEθ0,t1vt1jutEθ,t1vt1juJ ´ tEθ,t1vt1jutEθ0,t1vt1juJ ` tEθ,t1vt1jutEθ,t1vt1juJ. This key lemma can be
regarded as a finite sample version of the celebrated Delta’s method (e.g., (Van der Vaart, 1998))
used widely in classical statistics to estimate and/or infer a functional of unknown quantities.
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Lemma 84. For all t ą T0 and S Ď rN s, |S| ď K, it holds that | pRtpSq´RtpSq| À
a

d logpρνTKq¨
b

}I
´1{2
t´1 pθ0qMtpθ0|SqI

´1{2
t´1 pθ0q}op, where in À notation we only hide numerical constants.

Below we state our proof of Lemma 84. Fix S Ď rN s. We use Rtpθq “ Eθ,trrtjs “
r
ř

jPS rtj exptvJtjθus{r1 `
ř

jPS exptvJtjθus to denote the expected revenue of assortment S at
time t, evaluated using a specific model θ P R. Then

∇θRtpθq “

ř

jPS rtj exptvJtjθup1`
ř

jPS exptvJtjθuq
2 ´ p

ř

jPS rtj exptvJtjθuqp
ř

jPS exptvJtjθuq

p1`
ř

jPS exptvJtjθuq
2

“ Eθ,trrtjvtjs ´ tEθ,trtjutEθ,tvtju. (4.159)

By the mean value theorem, there exists rθt´1 “ θ0 ` ξppθt´1 ´ θ0q for some ξ P p0, 1q such
that

ˇ

ˇ pRtpSq ´RtpSq
ˇ

ˇ “
ˇ

ˇRtp
pθt´1q ´Rtpθ0q

ˇ

ˇ “
ˇ

ˇx∇Rtp
rθt´1q, pθt´1 ´ θ0y

ˇ

ˇ

“

b

ppθt´1 ´ θ0q
Jr∇Rtp

rθt´1q∇Rtp
rθt´1q

Jqsppθt´1 ´ θ0q. (4.160)

Recall that∇Rtp
rθt´1q “ E

rθt´1,t
rrtjvtjs´tErθt´1,t

rtjutErθt´1,t
vtju “ E

rθt´1,t
rprtj´Erθt´1,t

rtjqpvtj´

E
rθt´1,t

vtjqs. Subsequently, by Jenson’s inequality and the fact that rtj P r0, 1s almost surely,

∇Rtp
rθt´1q∇Rtp

rθt´1q
J ĺ E

rθt´1,t

”

prtj ´ E
rθt´1,t

rtjq
2
pvtj ´ E

rθt´1,t
vtjqpvtj ´ E

rθt´1,t
vtjq

J
ı

ĺ E
rθt´1,t

”

pvtj ´ E
rθt´1,t

vtjqpvtj ´ E
rθt´1,t

vtjq
J
ı

“ xMtp
rθt´1|Sq. (4.161)

Define xMtpθ|Sq :“ Eθ,trpvtj ´ Eθ,tvtjqpvtj ´ Eθ,tvtjqJs, where S Ď rN s is the assortment
supplied at iteration t. Combining Eqs. (4.160,4.161) with Lemma 79, we have

ˇ

ˇ pRtpSq ´RtpSq
ˇ

ˇ À
a

d logpρνNT q ¨

b

}It´1pθ0q
´1{2

xMtp
rθt´1|SqIt´1pθ0q

´1{2}op. (4.162)

It remains to show that xMtp
rθt´1|Sq and Mtpθ0|Sq are close, for which we first recall the

definitions of both quantities:

xMtp
rθt´1|Sq “ E

rθt´1,t

”

pvtj ´ E
rθt´1,t

vtjqpvtj ´ E
rθt´1,t

vtjq
J
ı

;

Mtpθ0|Sq “ Eθ0,trvtjvJtjs ´ tEθ0,tvtjutEθ0,tvtjuJ “ xMtpθ0|Sq.

The next lemma shows that under suitable conditions xMtp
rθt´1|Sq is close to xMtpθ0|Sq “

Mtpθ0|Sq, implying that 1
4
Mtpθ0|Sq ĺ xMtp

rθt´1|Sq ĺ 4Mtpθ0|Sq. It is proved in the supplemen-
tary material.
Lemma 85. Suppose τ ď 1{

a

8ρ2ν2K2. Then 1
4
Mtpθ0|Sq ĺ xMtp

rθt´1|Sq ĺ 4Mtpθ0|Sq for all t,
S and θ.
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Proof. Define M tpθ|Sq :“ Eθ0,trpvtj ´ Eθ,tvtjqpvtj ´ Eθ,tvtjqJs, where only the outermost ex-
pectation is replaced by taking with respect to the probability law under θ0. Denote also rwj :“

vtj ´ Eθ,tvtj . Then M tpθ|Sq “
ř

j pθ0,tpjq rwj rw
J
j and M tpθ|Sq ´ xMtpθ|Sq “

ř

j δj rwj rw
J
j , where

δj “ pθ0,tpjq ´ pθ,tpjq. By Eq. (4.138) and the fact that }vti}2 ď ν, }θ ´ θ0}2 ď τ , we have

max
j
|δj| ď

?
4ν2 ¨ τ . (4.163)

On the other hand, by (A2) we know that minj pθ0,tpjq ě 1{ρK and therefore

M tpθ|Sq “
ÿ

j

pθ0,t rwj rw
J
j ľ

1

ρK

ÿ

j

rwj rw
J
j . (4.164)

Combining Eqs. (4.163,4.164) and the fact that M tpθ|Sq ´ xMtpθ|Sq “
ř

j δj rwj rw
J
j , we have

M tpθ|Sq ´ xMtpθ|Sq ĺ M tpθ|Sq{2 and xMtpθ|Sq ´M tpθ|Sq ĺ M tpθ|Sq{2, provided that τ ď
1{
a

8ρ2ν2K2. This also implies 1
2
M tpθ|Sq ĺ xMtpθ|Sq ĺ 2M tpθ|Sq.

We next prove that 1
2
Mtpθ0|Sq ĺ M tpθ|Sq ĺ 2Mtpθ0|Sq which, together with 1

2
M tpθ|Sq ĺ

xMtpθ|Sq ĺ 2M tpθ|Sq established in the previous section, implies Lemma 85. Recall the defini-
tions that

Mtpθ0|Sq “ Eθ0,t
“

pvtj ´ Eθ0,tvtjqpvtj ´ Eθ0,tvtjqJ
‰

;

M tpθ|Sq “ Eθ0,t
“

pvtj ´ Eθ,tvtjqpvtj ´ Eθ,tvtjqJ
‰

.

Adding and subtracting Eθ,tvtj,Eθ0,tvtj terms, we have

M tpθ|Sq ´Mtpθ0|Sq

“ Eθ0,t
“

pvtj ´ Eθ0,tvtj ` Eθ0,tvtj ´ Eθ,tvtjqpvtj ´ Eθ0,tvtj ` Eθ0,tvtj ´ Eθ,tvtjqJ
‰

´ Eθ0,t
“

pvtj ´ Eθ0,tvtjqpvtj ´ Eθ0,tvtjqJ
‰

“ Eθ0,t
“

pEθ0,tvtj ´ Eθ,tvtjqpvtj ´ Eθ0,tvtjqJ
‰

` Eθ0,t
“

pvtj ´ Eθ0,tvtjqpEθ0,tvtj ´ Eθ,tvtjqJ
‰

` pEθ0,tvtj ´ Eθ,tvtjqpEθ0,tvtj ´ Eθ,tvtjqJ

“ pEθ0,tvtj ´ Eθ,tvtjqpEθ0,tvtj ´ Eθ,tvtjqJ.

By Eq. (4.134) in the proof of Lemma 80, we have that

pEθ0,tvtj ´ Eθ,tvtjqpEθ0,tvtj ´ Eθ,tvtjqJ À
1

2
Eθ0,trpvtj ´ Eθ0,tvtjqpvtj ´ Eθ0,tvtjqJs “

1

2
Mtpθ0|Sq

provided that τ ď 1{
a

8ρ2ν2K2, thus implying 1
2
Mtpθ0|Sq ĺ M tpθ|Sq ĺ 2Mtpθ0|Sq.

As a consequence of Lemma 85, the right-hand side of Eq. (4.162) can be upper bounded by
a

d logpρνTKq ¨
b

4}It´1pθ0q
´1{2Mtpθ0|SqIt´1pθ0q

´1{2}op.

Lemma 84 is thus proved. We are now ready to prove Lemma 83. By Lemma 84, we know
that with high probability

ˇ

ˇ pRtpSq ´RtpSq
ˇ

ˇ À
a

d logpρνTKq ¨
b

}It´1pθ0q
´1{2Mtpθ0|SqIt´1pθ0q

´1{2}op (4.165)
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In addition, by Lemma 85 and the fact that }pθt´1 ´ θ0}2 ď τ thanks to the local MLE
formulation, we have 1

4
Mtpθ0|Sq ĺ xMtp

pθt´1|Sq ĺ 4Mtpθ0|Sq and subsequently 1
4
It´1pθ0q ĺ

pIt´1p
pθt´1q ĺ 4It´1pθ0q because It´1p¨q and pIt´1p¨q are summations of Mt1p¨q and xMt1p¨q terms.

Setting ω Á
a

d logpρνTKq we proved that RtpSq ě RtpSq. The second property of Lemma 83
can be proved similarly, by invoking the spectral similarities between It´1p¨q, Mt1p¨q and pIt´1p¨q,
xMt1p¨q.

The elliptical potential lemma

Let S˚t be the assortment that maximizes the expected revenue Rtp¨q (defined in Eq. (4.27)) at
time period t, and St be the assortment selected by Algorithm 13. Because RtpSq ď RtpSq
for all S (see Lemma 83), we have the following upper bound for each term in the regret (see
Eq. (4.28)):

RtpS
˚
t q ´RtpStq ď pRtpS

˚
t q ´RtpStqq ` pRtpStq ´RtpStqq ď RtpStq ´RtpStq, (4.166)

where the last inequality holds because RtpS
˚
t q ´RtpStq ď 0 (note that St maximizes Rtp¨q).

Subsequently, invoking Lemma 83 and the Cauchy-Schwarz inequality, we have

T
ÿ

t“T0`1

RtpS
˚
t q ´RtpStq À

a

d logpρνTKq ¨
T
ÿ

t“T0`1

b

mint1, }I
´1{2
t´1 pθ0qMtpθ0|StqI

´1{2
t´1 pθ0q}opu

À

g

f

f

edT logpρνTKq ¨
T
ÿ

t“T0`1

mint1, }I
´1{2
t´1 pθ0qMtpθ0|StqI

´1{2
t´1 pθ0q}

2
opu. (4.167)

The following lemma is a key result that upper bounds
řT
t“T0`1 mint1, }I

´1{2
t´1 pθ0qMtpθ0|StqI

´1{2
t´1 pθ0q}

2
opu.

It is usually referred to as the elliptical potential lemma and has found many applications in con-
textual bandit-type problems (see, e.g., Dani et al. (2008); Filippi et al. (2010); Li et al. (2017b);
Rusmevichientong et al. (2010)).
Lemma 86. It holds that

T
ÿ

t“T0`1

mint1, }I
´1{2
t´1 pθ0qMtpθ0|StqI

´1{2
t´1 pθ0q}

2
opu ď 4 log

det IT pθ0q

det IT0pθ0q
À d logpλ´1

0 ρνq.

Proof. Denote At :“ I
´1{2
t´1 pθ0qMtpθ0|StqI

´1{2
t´1 pθ0q as d-dimensional positive semi-definite ma-

trices with eigenvalues sorted as σ1pAtq ě ¨ ¨ ¨ ě σdpAtq ě 0. By simple algebra,

T
ÿ

t“T0`1

mint1, }I
´1{2
t´1 pθ0qMtpθ0|StqI

´1{2
t´1 pθ0q}

2
opu “

T
ÿ

t“T0`1

mint1, σ1pAtq
2
u

ď

T
ÿ

t“T0`1

2 logp1` σ1pAtq
2
q ď

T
ÿ

t“T0`1

4 logp1` σ1pAtqq. (4.168)
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On the other hand, note that Itpθ0q “ It´1pθ0q`Mtpθ0|Stq “ It´1pθ0q
1{2rIdˆd`AtsIt´1pθ0q

1{2.
Hence,

log det Itpθ0q “ log det It´1pθ0q `

d
ÿ

j“1

logp1` σjpAtqq. (4.169)

Comparing Eqs. (4.168) and (4.169), we have

T
ÿ

t“T0`1

mint1, }I
´1{2
t´1 pθ0qMtpθ0|StqI

´1{2
t´1 pθ0q}

2
opu ď 4 log

det IT pθ0q

det IT0pθ0q
, (4.170)

which proves the first inequality in Lemma 86.
We next prove the second inequality in Lemma 86. Because assortments have size 1 through-

out the pure exploration phase (t ď T0), we have

IT0pθ0q “

T0
ÿ

t“1

pθ0,tpjtqp1´ pθ0,tpjtqq
2vt,jtv

J
t,jt ě

1

p1` ρq3
¨

T0
ÿ

t“1

vt,jtv
J
t,jt , (4.171)

where the last inequality holds thanks to assumption (A2), which implies pθ0,tpjtq P r1{p1 `
ρq, ρ{p1`ρqs. In addition, by the proof of Corollary 10, with high probability λminp

řT0
t“1 vt,jtv

J
t,jtq ě

0.5T0λ0, where λ0 ą 0 is a parameter specified in assumption (A1). Therefore,

det IT0pθ0q Á rT0λ0{ρ
3
s
d. (4.172)

On the other hand, because maxt,j }vtj}2 ď ν we have IT pθ0q À T ¨ ν2 and subsequently

det IT pθ0q À rν
2T sd. (4.173)

Combining Eqs. (4.172) and (4.173) we proved the second inequality in Lemma 86.

We are now ready to give the final upper bound on RegretptStu
T
t“1q defined in Eq. (4.28).

Note that the total regret incurred by the pure exploration phase is upper bounded by T0, because
the revenue parameters rtj are normalized so that they are upper bounded by 1. In addition, as
the failure event of RtpSq ď RtpSq for some S occurs with probability 1 ´ OpT´1q, the total
regret accumulated under the failure event is OpT´1q ¨ T “ Op1q. Further invoking Eq. (4.167)
and Lemma 86, we have

RegretptStu
T
t“1q ď T0 `Op1q ` E

T
ÿ

t“T0`1

RtpS
˚
t q ´RtpStq

À Op1q `
ν2d log T

λ2
0

`
ρ2pd` log T q

τ 2λ0

` d
?
T ¨ logpλ´1

0 ρνTKq

À Op1q ` d2λ´2
0 ρ4ν2K2 log T ` d

?
T ¨ logpλ´1

0 ρνTKq. (4.174)
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4.7.2 Proof of Theorem 20
At a higher level, the proof of Theorem 20 can be divided into three steps (separated into three
different sub-sections below). In the first step, we construct an adversarial parameter set and re-
duce the task of lower bounding the worst-case regret of any policy to lower bounding the Bayes
risk of the constructed parameter set. In the second step, we use a “counting argument” similar to
the one developed in the work of Chen & Wang (2018) to provide an explicit lower bound on the
Bayes risk of the constructed adversarial parameter set, and finally we apply Pinsker’s inequality
(see, e.g., (Tsybakov, 2009)) to derive a complete lower bound.

Adversarial construction and the Bayes risk

Let ε P p0, 1{d
?
dq be a small positive parameter to be specified later. For every subset W Ď rds,

define the corresponding parameter θW P Rd as rθW si “ ε for all i P W , and rθW si “ 0 for all
i R W . The parameter set we consider is

θ P Θ :“ tθW : W PWd{4u :“ tθW : W Ď rds, |W | “ d{4u. (4.175)

Note that d{4 is a positive integer because d is divisible by 4, as assumed in Theorem 20. Also,
to simplify notation, we useWk to denote the class of all subsets of rds whose size is k.

The feature vectors tvtiu are constructed to be invariant across time iterations t. For each t
and U P Wd{4, K identical feature vectors vU are constructed as (recall that K is the maximum
allowed assortment capacity)

rvU si “ 1{
?
d for i P U ; rvU si “ 0 for i R U. (4.176)

It is easy to check that with the condition ε P p0, 1{
?
dq, }θW }2 ď 1 and }vU}2 ď 1 for all

W,U P Wd{4. Hence the worst-case regret of any policy π can be lower bounded by the worst-
case regret of parameters belonging to Θ, which can be further lower bounded by the “average”
regret over a uniform prior over Θ:

sup
v,θ

Eπv,θ
T
ÿ

t“1

RpS˚θ q ´RpStq ě max
θW PΘ

Eπv,θW
T
ÿ

t“1

RpS˚θW q ´RpStq

ě
1

|Wd{4|

ÿ

WPWd{4

Eπv,θW
T
ÿ

t“1

RpS˚θW q ´RpStq. (4.177)

Here S˚θ is the optimal assortment of size at most K that maximizes (expected) revenue
under parameterization θ. By construction, it is easy to verify that S˚θW consists of all K items
corresponding to feature vW . We also employ constant revenue parameters rti ” 1 for all t P rT s,
i P rN s.

The counting argument

In this section we drive an explicit lower bound on the Bayes risk in Eq. (4.177). For any
sequences tStuTt“1 produced by the policy π, we first describe an alternative sequence trStuTt“1

that provably enjoys less regret under parameterization θW , while simplifying our analysis.
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Let vU1 , ¨ ¨ ¨ , vUL be the distinct feature vectors contained in assortment St (if St “ H then
one may choose an arbitrary feature vU ) with U1, ¨ ¨ ¨ , UL P Wd{4. Let U˚ be the subset among
U1, ¨ ¨ ¨ , UL that maximizes xvU˚ , θW y, where θW is the underlying parameter. Let rSt be the
assortment consisting of all K items corresponding to feature v˚U . We then have the following
observation:
Proposition 20. RpStq ď RprStq under θW .

Proof. Because rtj ” 1 in our construction, we have RpStq “ p
ř

jPSt
ujq{p1 `

ř

jPSt
ujq where

uj “ exptvJj θW u under θW . Clearly RpSq is a monotonically non-decreasing function in uj . By
replacing all vj P St with vU˚ P rSt, the uj values do not decrease and therefore the Proposition
holds true.

To simplify notation we also use rUt to denote the unique U˚ P Wd{4 in rSt. We also use EW
and PW to denote the law parameterized by θW and policy π. The following lemma gives a lower
bound on RprStq ´RpS˚θW q by comparing it with W .

Lemma 87. Suppose ε P p0, 1{d
?
dq and define δ :“ d{4´ |rUt XW |. Then

RpS˚θW q ´Rp
rStq ě

δε

4K
?
d
.

Proof. Let v “ vW and pv “ v
rUt

be the corresponding feature vectors. Then

RpS˚θW q ´Rp
rStq “

K exptvJθW u

1`K exptvJθW u
´

K exptpvJθW u

1`K exptpvJθW u

“
KrexptvJθW u ´ exptpvJθW us

p1`K exptvJθW uqp1`K exptpvJθW uq

ě
exptvJθW u ´ exptpvJθW u

2Ke
.

Here the last inequality holds because maxpexptvJθW u, exptpvJθW uq ď e. In addition, by
Taylor expansion we know that 1` x ď ex ď 1` x` x2{2 for all x P r0, 1s. Subsequently,

RpS˚θW q ´Rp
rStq ě

pv ´ pvqJθW ´ ppv
JθW q

2{2

2Ke
ě
δε{
?
d´ p

?
dεq2{2

2Ke
.

Finally, noting that dε2{2 ď δε{2
?
d provided that ε P p0, 1{d

?
dq, we finish the proof of

Lemma 87.

Define random variables rNi :“
řT
t“1 1ti P rUtu. Lemma 87 immediately implies

EW
T
ÿ

t“1

RpS˚θW q ´Rp
rStq ě

ε

4K
?
d

˜

dT

4
´

ÿ

iPW

EW r rNis

¸

, @W PWd{4. (4.178)
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Denote Wpiq
d{4 :“ tW P Wd{4 : i P W u and Wd{4´1 :“ tW Ď rds : |W | “ d{4 ´ 1u.

Averaging both sides of Eq. (4.178) with respect to all W P Wd{4 and swapping the summation
order, we have

1

|Wd{4|

ÿ

WPWd{4

EW
T
ÿ

t“1

RpS˚θW q ´RpStq ě
ε

4K
?
d

1

|Wd{4|

ÿ

WPWd{4

˜

dT

4
´

ÿ

iPW

EW r rNis

¸

“
ε

4K
?
d

¨

˚

˝

dT

4
´

1

|Wd{4|

d
ÿ

i“1

ÿ

WPWpiq
d{4

EW r rNis

˛

‹

‚

“
ε

4K
?
d

¨

˝

dT

4
´

1

|Wd{4|

ÿ

WPWd{4´1

ÿ

iRW

EWYtiur rNis

˛

‚

ě
ε

4K
?
d

˜

dT

4
´
|Wd{4´1|

|Wd{4|
max

WPWd{4´1

ÿ

iRW

EWYtiur rNis

¸

“
ε

4K
?
d

˜

dT

4
´
|Wd{4´1|

|Wd{4|
max

WPWd{4´1

ÿ

iRW

EW r rNis ` EWYtiur rNis ´ EW r rNis

¸

.

Note that for any fixedW ,
ř

iRW EW r rNis ď
řd
i“1 EW r rNis ď dT {4. Also, |Wd{4´1|{|Wd{4| “

`

d
d{4´1

˘

{
`

d
d{4

˘

“
d{4

3d{4`1
ď 1{3. Subsequently,

1

|Wd{4|

ÿ

WPWd{4

EW
T
ÿ

t“1

RpS˚θW q´RpStq ě
ε

4K
?
d

˜

dT

6
´ max

WPWd{4´1

ÿ

iRW

|EWYtiur rNis ´ EW r rNis|

¸

.

(4.179)

Pinsker’s inequality

In this section we concentrate on upper bounding |EWYtiur rNis ´ EW r rNis| for any W P Wd{4´1.
Let P “ PW and Q “ PWYtiu denote the laws under θW and θWYtiu, respectively. Then

ˇ

ˇEP r rNis ´ EQr rNis
ˇ

ˇ ď

T
ÿ

j“0

j ¨
ˇ

ˇP r rNi “ js ´Qr rNi “ js
ˇ

ˇ

ď T ¨
T
ÿ

j“0

ˇ

ˇP r rNi “ js ´Qr rNi “ js
ˇ

ˇ

ď T ¨ }P ´Q}TV ď T ¨

c

1

2
KLpP }Qq,

where }P´Q}TV “ supA |P pAq´QpAq| is the total variation distance between P ,Q, KLpP }Qq “
ş

plog dP {dQqdP is the Kullback-Leibler (KL) divergence between P , Q, and the inequality

}P ´Q}TV ď

b

1
2
KLpP }Qq is the celebrated Pinsker’s inequality.

177



For every i P rds define random variables Ni :“
řT
t“1

1
K

ř

vUPSt
1ti P Uu. The next lemma

upper bound the KL divergence:
Lemma 88. For any W PWd{4´1 and i P rds, KLpPW }PWYtiuq ď CKL ¨EW rNis ¨ ε

2{d for some
universal constant CKL ą 0.

Proof. Fix a time twith policy’s assortment choice St, and define nipStq :“
ř

vUPSt
1ti P Uu{K.

Let tpjujPStYt0u and tqjujPStYt0u be the probabilities of purchasing item j under parameterization
θW and θWYtiu, respectively. Then

KLpPW p¨|Stq}PWYtiup¨|Stqq “
ÿ

jPStYt0u

pj log
qj
pj
ď
ÿ

j

pj
pj ´ qj
qj

ď
ÿ

j

|pj ´ qj|
2

qj
, (4.180)

where the only inequality holds because logp1` xq ď x for all x ą ´1. Because qj ě e´1{p1`
Keq ě 1{p2Ke2q for all j P St Y t0u, Eq. (4.180) is reduced to

KLpPW p¨|Stq}PWYtiup¨|Stqq ď 2e2K ¨
ÿ

jPStYt0u

|pj ´ qj|
2. (4.181)

We next upper bound |pj ´ qj| separately. First consider j “ 0. We have

|pj ´ qj| “

ˇ

ˇ

ˇ

ˇ

ˇ

1

1`
ř

jPSt
exptvJj θW u

´
1

1`
ř

jPSt
exptvJj θWYtiuu

ˇ

ˇ

ˇ

ˇ

ˇ

ď
1

p1`K{eq2
¨ 2

ÿ

jPSt

ˇ

ˇvJj pθW ´ θWYtiuq
ˇ

ˇ

ď
2KnipStqε{

?
d

p1`K{eq2
ď

8e2nipStqε

K
?
d

.

Here the first inequality holds because ex ď 1` 2x for all x P r0, 1s.
For j ą 0 corresponding to vj “ vU where i R U , we have

|pj ´ qj| “

ˇ

ˇ

ˇ

ˇ

ˇ

exptvJUθW u

1`
ř

jPSt
exptvJj θW u

´
exptvJUθWYtiuu

1`
ř

jPSt
exptvJj θWYtiuu

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ˇ

1

1`
ř

jPSt
exptvJj θW u

´
1

1`
ř

jPSt
exptvJj θWYtiuu

ˇ

ˇ

ˇ

ˇ

ˇ

ď
8e2nipStqε

K
?
d

.

Here the first inequality holds because exptvJUθW u “ exptvJUθWYtiuu ď 1, since i R U .
For j ą 0 corresponding to vj “ vU and i P U , we have

|pj ´ qj| “

ˇ

ˇ

ˇ

ˇ

ˇ

exptvJUθW u

1`
ř

jPSt
exptvJj θW u

´
exptvJUθWYtiuu

1`
ř

jPSt
exptvJj θWYtiuu

ˇ

ˇ

ˇ

ˇ

ˇ
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ď exptvJu θWYtiuu ¨

ˇ

ˇ

ˇ

ˇ

ˇ

1

1`
ř

jPSt
exptvJj θW u

´
1

1`
ř

jPSt
exptvJj θWYtiuu

ˇ

ˇ

ˇ

ˇ

ˇ

`
ˇ

ˇ exptvJu θW u ´ exptvJu θWYtiuu
ˇ

ˇ ¨

ˇ

ˇ

ˇ

ˇ

ˇ

1

1`
ř

jPSt
exptvJj θW u

ˇ

ˇ

ˇ

ˇ

ˇ

ď
8e2nipStqε

K
?
d

`
ε
?
d
¨

1

1`K{e
. ď

8e2nipStqε

K
?
d

`
2eε

K
?
d
.

Combining all upper bounds on |pj ´ qj| and Eq. (4.181), we have

KLpPW p¨|Stq}PWYtiup¨|Stqq ď 2e2K ¨

„

128e4nipStq
2ε2

K2d
p1`Kq `KnipStq ¨

8e4ε2

K2d



À nipStqε
2
{d.

Here the last inequality holds because nipStq ď 1. Note also that Ni “
řT
t“1 nipStq by

definition, and subsequently summing over all t “ 1 to T we have

KLpPW }PWYtiuq À EW rNis ¨ ε
2
{d,

which is to be demonstrated.

Combining Lemma 88 and Eq. (4.179), we have

1

|Wd{4|

ÿ

WPWd{4

EW
T
ÿ

t“1

RpS˚θW q ´RpStq ě
ε

4K
?
d

˜

dT

6
´ T

d
ÿ

i“1

a

CKLEW rNisε2{d

¸

.

Further using Cauchy-Schwartz inequality, we have

d
ÿ

i“1

a

CKLEW rNisε2{d ď
?
d ¨

g

f

f

e

d
ÿ

i“1

CKLEW rNisε2{d,

which is further upper bounded by
?
d ¨

a

CKLTε2{4 because
řd
i“1 EW rNis ď dT {4. Subse-

quently,

1

|Wd{4|

ÿ

WPWd{4

EW
T
ÿ

t“1

RpS˚θW q ´RpStq ě
ε

4K
?
d

ˆ

dT

6
´ T

a

C 1KLdTε
2

˙

, (4.182)

where C 1KL “ CKL{4. Setting ε “
a

d{144C 1KLT we complete the proof of Theorem 20.
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Chapter 5

Conclusion and discussion

In this thesis, we study various problmes under the general theme of selective data acquision
in learning and decision making. In this ending chapter, we summarize the main conceptual
findings from this thesis, and also discuss potential future directions for extending the presented
thesis work.

5.1 Benefits of selective or active data acquisition

Using selective or interactive data collection schemes to improve data efficiency has a long
history in statistics and machine learning research (Balcan et al., 2009; Cohn et al., 1996; Fe-
dorov, 1972; Hanneke et al., 2014; Pukelsheim, 2006; Settles, 2009; Tong & Koller, 2001; Wu
& Hamada, 2011). Intuitively, by focusing data collection to regions that are most informative
about the underlying data generation procedure, the efficiency of the data analysis procedures is
much improved. Rigorous theoretical justification also exist, mostly targeting active regression
or classification problems (Balcan et al., 2010; Balcan & Long, 2013; Castro & Nowak, 2008;
Hanneke et al., 2014; Krishnamurthy, 2015; Wang, 2011; Wang & Singh, 2016).

In this thesis work, we study the benefits of selective or active data acquisition schemes be-
yond their traditional applications in statistical regression and classification. Our theoretical and
empirical results re-affirm the benefits of selective data acquisition for problems like nonpara-
metric optimization and/or dynamic assortment optimization.

More specifically, for optimizing an unknown, non-convex smooth function in low dimen-
sions, our theoretical results show a polynomial gap of the optimal convergence rates (sample
complexity) between passive and interactive query schemes when the objective functions have
a non-trivial level set growth (Theorems 4, 5 and 6) via localized minimax analysis, whose
importance we will also discuss in the next subsection. For dynamic assortment optimization,
our results on regret upper bounds (Theorems 13, 14, 17 and 19) emphasize the importance of
combining statistical estimation (of customers’ utility model parameters) and combinatorial op-
timization (of assortments) at the same time in order to achieve the minimum regret possible over
T sequentially arriving customers. This latter point is also discussed in Sec. 5.3 later.
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5.2 Importance of optimality and minimax analysis
In this thesis, Optimality of our proposed methods is studied using the minimax framework
(Ibragimov & Has’minskii, 1981; Korostelev & Tsybakov, 2012; Tsybakov, 2009) and its vari-
ants from the statistics literature, which lower bounds the worst-case error or regret any al-
gorithm/policy will incur. While such analysis leads to negative results based on worst-case
scenarios, its importance should not be undermined as new insights are generated through such
minimax analysis. Below we mention two examples.

First, for the problem of global optimization of smooth non-convex functions, our minimax
analysis (together with corresponding upper bounds and algorithms) establishes a clear separa-
tion between passive and interactive schemes. Such a separation would not be possible without
rigorous optimality analysis of the proposed algorithms. In addition, we remark that for this par-
ticular question the classical global minimax analysis will not separate passive and interactive
schemes either, as the worst-case function over all smooth functions is the same for both query
schemes. To overcome this difficulty, a local variant of minimax analysis is adopted in order to
prove a difference in convergence rates for objective functions with non-trivial level set growth.

Second, analysis of optimal regret plays an important role in revealing some surprising phase
transitions of problem complexity when only very subtle changes in the problem settings are
present. For example, in Sec. 3.3 where optimization of non-stationary convex function se-
quences is studied, a single change in the norms of how function variation is measured gives
rises to the curse-of-dimensionality phenomenon, which is not visible when the most restrictive
p “ 8 norm is used. Another example concerns dynamic assortment optimization under the
plain MNL model: results in Theorems 13, 14 and 16 together reveal a surprising phase transi-
tion between the uncapacitated case (K “ N ) with no N -dependency and the capacitated case
(K ď N{4) with

?
N -dependency. Such unexpected phenomena would be counter-intuitive

without rigorous optimality analysis matching upper bounds of proposed algorithms.

5.3 Unification of data analysis and decision making
Many fundamental tasks in operations and revenue management involve decision making and
optimization, such as the optimization of commodity assortments for online or offline display
(Davis et al., 2014; Gallego et al., 2004; Kök et al., 2008; Li & Rusmevichientong, 2014; Maha-
jan & van Ryzin, 2001; Talluri & van Ryzin, 2004; van Ryzin & Mahajan, 1999), the determi-
nation of optimal pricing of items (Bitran & Caldentey, 2003; Elmaghraby & Keskinocak, 2003;
Talluri & Van Ryzin, 2006) and stochastic assignments of sequentially arriving jobs to workers
or kidneys to patients under medical management settings (Bertsimas et al., 2013; Derman et al.,
1972; Su & Zenios, 2005; Zenios et al., 2000).

Traditionally, the above-mentioned decision making problems are solved with environmental
parameters and settings fully specified, by resorting to greedy or dynamic programming (DP)
type methods. Unfortunately, the more common practical scenario is when the modeling param-
eters are unknown a priori, which have to be estimated either offline from historical data or online
simultaneously from sequentially made decisions. The uncertainty in the estimated parameters
also brings unique challenges to existing algorithms originally designed for full-information set-
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tings. One particular challenge is the instability of most dynamic programming methods, in
which even a small estimation error in the model parameters might incur large deviation from
the optimal policy in a DP formulation (Goldenshluger & Zeevi, 2017).

To overcome the difficulties DP-type algorithms face, regret minimization arises as a power-
ful unified framework for simultaneous estimation and decision making. While the concept of
regret (and its optimality) has been very common in multi-armed and contextual bandit problems
(Abbasi-Yadkori et al., 2011; Audibert et al., 2011; Auer, 2002; Bubeck & Cesa-Bianchi, 2012;
Chu et al., 2011; Filippi et al., 2010; Li et al., 2017b; Rusmevichientong & Tsitsiklis, 2010), its
study in more general operations management questions remains a relatively new area and has
attracted significant recent research efforts (Agrawal et al., 2017a,b; Caro & Gallien, 2007; El-
maghraby & Keskinocak, 2003; Rusmevichientong et al., 2010). Our results in Chapter 4 further
extend such efforts to more complex and practical revenue management models, and we envision
a much wider range of problems that could benefit from similar ideas and treatments, which we
elaborate in more details in the next subsection.

5.4 Future directions
Based on the thesis presented, my future work would extend the learning-while-doing framework
for operations research and management problems by combining both the perspectives of asymp-
totic regret analysis and exact policy optimization. Below are two major directions I would like
to pursue in the near future.

5.4.1 Regret analysis for dynamic programming with partial information
Traditionally, when full information about the environment is available, the optimal strategy
of a sequential decision making problem can be obtained by solving a (stochastic) dynamic
programming. When only partial information is available, however, such an approach becomes
less practical as dynamic programming is generally sensitive to small perturbation (estimation
error) of the decision process parameters. For such settings, asymptotic regret analysis might be
a more appropriate framework.

One such example is the question of assigning sequentially arriving jobs to awaiting work-
ers, which is a classical question in operations research, with important applications in kidney
exchange systems (Bertsimas et al., 2013; Derman et al., 1972; Su & Zenios, 2005; Zenios et al.,
2000). When the difficulty levels of arriving jobs (or qualities of available kidneys) are stochastic
and follow a known probability distribution, exactly optimal allocation policies can be found by
dynamic programming (Derman et al., 1972). It is an interesting question to study the allocation
problem when the underlying distribution of arriving jobs is unknown and have to be learnt from
observations of previously assigned matches.

5.4.2 POMDP and reinforcement learning
The results presented in this thesis on dynamic assortment planning with unknown utility mod-
els (Chapter 4), as well as previous works of Agrawal et al. (2017a,b); Rusmevichientong et al.
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(2010), all took a regret minimization approach by first developing an online assortment rec-
ommendation policy and then proving upper bounds on its regret. When possible, information-
theoretical lower bounds are proved to establish the (asymptotic) optimality of the proposed
policies.

When prior information about the customers’ utility models is available, existing regret based
approaches might be too conservative as they typically only consider the worst-case regret. Par-
tially observable Markov decision processes (POMDPs, (Astrom, 1965; Kaelbling et al., 1998))
present a more flexible framework for the modeling and solving of dynamic assortment opti-
mization questions, by representing the unknown utility model parameters as unobserved states.
Approximate computation techniques such as the ones introduced in the works of Fukuda (2004);
Zhang (2010) could also be applied.

184



Appendix A

Useful inequalities

A.1 Scalar concentration inequalities
Lemma 89 (Hoeffding (1963)). Suppose X1, . . . , Xn are i.i.d. random variables such that a ď
Xi ď b almost surely. Then for any t ą 0,

Pr

«
ˇ

ˇ

ˇ

ˇ

ˇ

1

n

n
ÿ

i“1

Xi ´ EX

ˇ

ˇ

ˇ

ˇ

ˇ

ą t

ff

ď 2 exp

"

´
nt2

2pb´ aq2

*

.

Lemma 90 (Hsu et al. (2012)). Suppose x „ Ndp0, Idˆdq and let A be a d ˆ d positive semi-
definite matrix. Then for all t ą 0,

Pr
”

xJAx ą trpAq ` 2
a

trpA2qt` 2}A}opt
ı

ď e´t.

Lemma 91 (Bernstein’s inequality). Suppose X is a sub-exponential random variable with pa-
rameters ν and α.

Pr
“ˇ

ˇX ´ EX
ˇ

ˇ ą t
‰

ď

"

2 exp t´t2{2ν2u , 0 ă t ď ν2{α;
2 exp t´t{2αu , t ą ν2{α.

The following lemma is a simplified version of Theorem 1.2A in (Victor, 1999) (note that the
original form in (Victor, 1999) is one-sided; the two-sided version below can be trivially obtained
by considering ´X1, . . . ,´Xn and applying the union bound).
Lemma 92 (Bernstein’s inequality for martingales). Suppose X1, . . . , Xn are random variables
such that ErXj|X1, . . . , Xj´1s “ 0 and ErX2

j |X1, . . . , Xj´1s ď σ2 for all t “ 1, . . . , n. Further
assume that Er|Xj|

k|X1, . . . , Xj´1s ď
1
2
k!σ2bk´2 for all integers k ě 3. Then for all t ą 0,

Pr

«

ˇ

ˇ

ˇ

ˇ

n
ÿ

j“1

Xj

ˇ

ˇ

ˇ

ˇ

ě t

ff

ď 2 exp

"

´
t2

2pnσ2 ` btq

*

.
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The following lemma is the Hoeffding’s maximal inequality, by Hoeffding (1963).
Lemma 93 (Hoeffding’s maximal inequality). Let X1, ¨ ¨ ¨ , Xn be i.i.d. random variables with
mean µ and satisfy a ď Xi ď b almost surely for all i P rns. Then for any t ą 0,

Pr r@i P rns, X1 ` ¨ ¨ ¨ `Xi ě i ¨ µ` ts ď exp

"

´
2t2

npb´ aq2

*

. (A.1)

The following result is cited from Theorem 5 of (Agrawal et al., 2017a).
Lemma 94 (Concentration of geometric random variables (Agrawal et al., 2017a)). Suppose
X1, ¨ ¨ ¨ , Xn are i.i.d. geometric random variables with parameters p ą 0, meaning that PrrXi “

ks “ p1´ pqkp for k “ 0, 1, 2, ¨ ¨ ¨ . Define µ :“ EXi “ p1´ pq{p. Then

Pr

«

1

n

n
ÿ

i“1

Xi ą p1` δqµ

ff

ď

$

&

%

exp
!

´
nµδ2

2p1`δqp1`µq2

)

, if µ ď 1,

exp
!

´
nδ2µ2

6p1`µq2

´

3´ 2δµ
1`µ

¯)

, if µ ě 1, δ P p0, 1q;

Pr

«

1

n

n
ÿ

i“1

Xi ă p1´ δqµ

ff

ď

$

&

%

exp
!

´
nδ2µ

6p1`µq2

´

3´ 2δµ
1`µ

¯)

, if µ ď 1,

exp
!

´
nδ2µ2

2p1`µq2

)

, if µ ě 1.

A.2 Matrix/vector concentration inequalities
Lemma 95 (Rudelson & Vershynin (2007)). Let x be a p-dimensional random vector such that
}x}2 ď M almost surely and }ExxJ}2 ď 1. Let x1, ¨ ¨ ¨ , xn be i.i.d. copies of x. Then for every
t P p0, 1q

Pr

«
›

›

›

›

›

1

n

n
ÿ

i“1

xix
J
i ´ ExxJ

›

›

›

›

›

2

ą t

ff

ď 2 exp

"

´C ¨
nt2

M2 log n

*

,

where C ą 0 is some universal constant.
Lemma 96 (Corollary 5.2 of Mackey et al. (2014)). Let pYkqkě1 be a sequence of random d-
dimensional Hermitian matrices that satisfy

EYk “ 0 and }Yk}2 ď R a.s.

Define X “
ř

kě1 Yk. The for any t ą 0,

Pr r}X}2 ě ts ď d ¨ exp

"

´
t2

3σ2 ` 2Rt

*

for σ2
“

›

›

›

›

›

ÿ

kě1

EY 2
k

›

›

›

›

›

2

.

Lemma 97 (Corollary 10.3 of Mackey et al. (2014)). Let A1, ¨ ¨ ¨ , An be a sequence of determin-
istic d-dimensional Hermitian matrices that satisfy

n
ÿ

k“1

Ak “ 0 and sup
1ďkďn

}Ak}2 ď R.
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Define random matrix X “
řm
j“1Aσpjq for m ď n, where σ is a random permutation from rns

to rns. Then for all t ą 0,

Pr r}X}2 ě ts ď d exp

"

´
t2

12σ2 ` 4
?

2Rt

*

for σ2
“
m

n

›

›

›

›

›

n
ÿ

k“1

A2
k

›

›

›

›

›

2

.

Lemma 98 (Tropp (2015), simplified). Suppose A1, . . . , An are i.i.d. positive semidefinite ran-
dom matrices of dimension d and }Ai}op ď R almost surely. Then for any t ą 0,

Pr

»

–

›

›

›

›

›

1

n

n
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i“1

Ai ´ EA

›

›

›

›

›

op

ą t

fi

fl ď 2 exp

"

´
nt2

8R2

*

.

A.3 Other inequalities
Lemma 99 (Weyl’s inequality). LetA andA`E be dˆdmatrices with σ1, . . . , σd and σ11, . . . , σ

1
d

being their singular values, sorted in descending order. Then max1ďiďd |σi ´ σ
1
i| ď }E}op.
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