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Abstract

In this paper we consider computationally tractable methods for discrete optimization in
experimental design, an important question in data mining and analysis when labeled data
are expensive and difficult to obtain. We propose an efficient algorithm based on continuous
relaxations and greedy swapping rounding techniques, which enjoy rigorous near-optimal ap-
proximation guarantees. We also test our algorithm on synthetic and real-world 3D lightweight
structure design problems and demonstrate the practical effectiveness of our proposed method.

Keywords: experimental design, combinatorial optimization, continuous relaxation, greedy
algorithm, spectral sparsification, approximation algorithm.

1 Introduction
Data are becoming increasingly important in scientific and computing disciplines. On the other
hand, collecting labels on all possible data points is usually expensive or even infeasible in many
applications. For example, in 3D lightweight structure design the evaluation of stress maps of
external forces applied at certain surface locations requires computer simulation of finite-element
analysis and could be very time consuming (Ulu et al., 2017). In another application of low-
temperature microwave-assisted thin film crystallization (Reeja-Jayan et al., 2012; Nakamura et al.,
2017), the quality of the crystalized film depends crucially on the experimental environments, and
it could take days to actually perform the crystallization and measure the quality of the outcome
for a particular experimental setup. In fMRI image analysis, experimental design could be applied
to design visual stimuli that most efficiently invoke certain neural responses (Leeds et al., 2014;
Leeds & Tarr, 2016).

As data labels are difficult to obtain, it is of vital importance in the above mentioned types of
data analytical problems to design principled methods to select, from a large unlabeled data points
pool, a small subset of design points on which labels are to be obtained. Such experimental design

∗Full version available at https://arxiv.org/abs/1711.05174.
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problems are extensively studied in statistics, machine learning and operations research. We refer
the readers to Sec. 1.2 for a brief summary of existing works on this classical problem.

Mathematically, let x1, ¨ ¨ ¨ , xn be known p-dimensional unlabeled design points, and k ! n be
a “budget parameter” indicating how many design points should be selected for labeling. Experi-
mental design can then be formulated as a discrete (combinatorial) optimization problem:

min
s
F psq “ min

s
f

˜

n
ÿ

i“1

sixix
J
i

¸

s.t. si P t0, 1u,
n
ÿ

i“1

si ď k. (1)

Here, f : Sd` Ñ R` is an objective that maps d-dimensional positive definite matrices to posi-
tive real numbers. The objective f is usually referred to as optimality criteria in the experimental
design literature (Pukelsheim, 2006; Fedorov, 1972) that reflects certain types of statistical effi-
ciency of a design subset txi : si “ 1u. We give a list of popular optimality criteria in Secs. 1.1,
1.2 and explain their motivations. For notational simplicity, we also use X P Rnˆp to denote the
nˆ p matrix X by stacking all unlabeled design points together.

In this paper we consider computationally efficient approaches to approximately solve the dis-
crete optimization problem in Eq. (1) for experimental design. Our algorithmic framework can be
roughly divided into two steps. In the first step, we consider a continuous relaxation of the dis-
crete optimization problem, which can be solved efficiently using conventional convex continuous
optimization methods. We then proceed to design a greedy swapping algorithm based on a novel
spectral-related potential function motivated by online matrix games. Detailed descriptions of our
proposed algorithmic framework and analysis of its properties are given in Secs. 2 and 3.

Our proposed algorithm enjoys three advantages. First, it is computationally efficient, as it
is theoretically polynomial-time and in practice the algorithm also converges fast by using the
entropic mirror descent method (Beck & Teboulle, 2003), as shown in Sec. 2.3 and 4. Second,
our method enjoys rigorous theoretical approximation ratio guarantees, achieving p1 ` εq-relative
approximation provided that k “ Ωpp{ε2q, which is proven not improvable for general objectives
and continuous relaxation based methods (Nikolov et al., 2018). Finally, our algorithm was shown
to work very effectively on a real-world 3D lightweight structural design problem (Ulu et al., 2017;
Wang et al., 2018), improving over baseline sampling methods by a large margin.’

1.1 Popular choices of objectives
Below we list several popular choices of the objective functions f :

- A-optimality (Average): fApΣq “ 1
p
trpΣ´1q;

- D-optimality (Determinant): fDpΣq “ pdet |Σ|q´1{p;

- T-optimality (Trace): fT pΣq “ p{trpΣq;

- E-optimality (Eigenvalue): fEpΣq “ }Σ´1}op “ λmaxpΣ
´1q;

- V-optimality (Variance): fV pΣq “ 1
n

řn
i“1 x

J
i Σ´1xi;

- G-optimality: fGpΣq “ maxi x
J
i Σ´1xi.

The first four objectives (A, D, T, E) concerns the quality of estimating an unknown linear
model, and the last two objectives (V, G) are more associated with prediction performance of the
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estimated models. We refer the readers to (Pukelsheim, 2006) for a complete list and discussion
of various optimality criteria used in the experimental design literature. Note that the optimality
criteria in the above list are “normalized” (by multiplying or raising to the power of 1{p) so that
the objective values do not depend heavily on the problem dimension p.

1.2 Related works
Experimental design is an old topic in statistics (Pukelsheim, 2006; Fedorov, 1972; Chaloner &
Verdinelli, 1995). Computationally efficient experimental design algorithms (with provable guar-
antee) are, however, a less studied field.

Perhaps the most well-studied optimality criterion is D-optimality fDpΣq “ detpΣq1{p (see
also Sec. 2.1), whose negative logarithm (i.e., log det Σ) is submodular, a property that sometimes
gives rises to 1 ´ 1{e approximation ratio using pipage rounding (Ageev & Sviridenko, 2004).
Unfortunately, log det Σ can be negative and thus pipage rounding could fail to provide a con-
stant relative approximation ratio with respect to detpΣq or detpΣq1{p. In (Bouhtou et al., 2010),
Bouhtou et al. proposed to maximize a function hpΣq :“ 1

p
trpΣqq for q P p0, 1s, and it satisfies

limqÑ0phpΣqq
´1{q “ fDpΣq. They showed that hpΣq is submodular and gave a p1´ 1{eq approxi-

mation to hpΣq for every q P p0, 1s using pipage rounding. This does not translate to any bounded
approximation ratio for fDpΣq because p1´ 1{eq´1{q is unbounded when q approaches zero.

Summa et al. (2015) gave a polynomial-time algorithm for a related maximum volume simplex
(MVS) problem in computational geometry with an Oplog pq approximation ratio, which was later
improved to Op1q by Nikolov (2015); Nikolov & Singh (2016). Their results imply an e approx-
imation ratio in the special case of k “ p. On the other hand, Summa et al. (2015) showed that
there exists a constant c ą 1 such that polynomial-time c-approximation of the D-optimality is im-
possible for the p “ k case, unless P “ NP. Therefore, additional assumptions on k are necessary
for the p1` εq-approximation regime we consider in this paper.

Another well-studied optimality criterion is the A/V-optimality (fA and/or fV , as we define in
Sec. 2.1), which is not submodular and hence pipage rounding is no longer relevant. Chamon &
Ribeiro (2017); Bian et al. (2017) considered an alternative “approximate supermodular” formu-
lation and derived a greedy algorithm with an Op1q approximation ratio for the A/V-optimality.
Their results, however, only apply to Bayesian experimental design settings and require the num-
ber of samples (k) to be lower bounded by a quantity that depends on the condition number of the
original design, which might be unbounded.

For the A-optimality criterion, Avron & Boutsidis (2013) proposed a greedy algorithm with an
approximation ratio Opn{kq with respect to fp

řn
i“1 xix

J
i q. This ratio is tight for their algorithm

in the worst case,1 Li et al. (2017) further computationally accelerated this greedy algorithm, and
achieved similar approximation guarantees.

Perhaps closest to this work, for A/V-optimality, Wang et al. (2017) introduced the idea of
continuous relaxation followed by a variant of this greedy algorithm of Avron & Boutsidis (2013),
and proved an approximation ratio quadratic in design dimension p and independent of pool size
n. This result can also be turned into an 1 ` ε approximation but requiring k ě Ωpp2{εq. For

1In the worst case, even the exact minimum min|S|ďk fp
ř

iPS xix
J
i q can be indeed Opn{kq times larger than

fp
řn

i“1 xix
J
i q (Avron & Boutsidis, 2013) different from the subset selection objective in Eq. (1). This worst-case

scenario may not always happen, but to the best our knowledge, their proof is tight in this worst case.
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the same A/V-optimality criteria, Wang et al. (2017) derived another algorithm based on effective-
resistance sampling (Spielman & Srivastava, 2011), that attains a p1 ` εq pseudo-approximation
ratio if k “ Ωpp log p{ε2q. Specifically, their output set S is of cardinality Opkq instead of k,
and allows “with replacement” selection by considering constraints si P N instead of si P t0, 1u
in Eq. (1). Wang et al. (2017); Chaudhuri et al. (2015); Dhillon et al. (2013) achieved p1 ` εq
approximations but require the subset size k to be much larger than the condition number of X .

Finally, while preparing the journal version of this paper, we were informed of independent
works of (Singh & Xie, 2017; Nikolov et al., 2018), which achieved p1`εq-relative approximation
for the A/D-optimality criteria under the weaker condition that k “ Ωpp{ε ` logpε´1q{ε2q. Their
techniques are based on volume sampling of symmetric elementary functions of matrix eigenval-
ues, and are less likely to be extendable to general optimality criteria objectives. Indeed, Nikolov
et al. (2018) proved a negative result showing that no continuous-relaxation based method can pos-
sibly attain p1`εq approximation for the E-optimaliy unless k “ Ωpp{ε2q, essentially showing our
theoretical analysis is the best possible one can hope for.

2 Preliminaries

2.1 Regularity conditions on objectives
We start with the definition of regular optimality criteria:

Definition 1 (Regular criteria). An optimality criterion f : S`p Ñ R is regular if it satisfies the
following properties:

1. Convexity: 2 fpλA` p1´ λqBq ď λfpAq ` p1´ λqfpBq for all λ P r0, 1s and A,B P S`p ;

2. Monotonicity: If A ĺ B then fpAq ě fpBq;

3. Reciprocal multiplicity: fptAq “ t´1fpAq for all t ą 0 and A P S`p .

It can be verified that all objective functions listed in Sec. 1.1 are regular.
The first condition ensures that the objective f (or one of its surrogate functions) is convex,

implying that a continuous relaxation of the original discrete optimization problem is efficiently
solvable using classical optimization methods for continuous convex programs.

The second condition in Definition 1 is natural in experimental design, because the sample
covariance A is the Fisher’s information matrix linear regression models and a design with sample
covariance A can never achieve superior statistical efficiency than a design with B if A ĺ B,
according to the Cramer-Rao information-theoretic limit (Van der Vaart, 2000).

The last condition in Definition 1 captures the linearity in experiment design, where a design
with sample covariance tA is exactly t-times as efficient as a design with covariance A.

Also, for D-optimality the proxy function gDpΣq “ ´ log detpΣq is considered to satisfy the
convexity property.

2This property could be relaxed to allow a proxy function g : S`p Ñ R being convex, where gpAq ď gpBq ô
fpAq ď fpBq.
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2.2 Continuous relaxation
A continuous relaxation to the discrete optimization problem in Eq. (1) takes the following form:

π˚ P arg min
π
F pπq “ arg min

π1,¨¨¨ ,πn
f

˜

n
ÿ

i“1

πixix
J
i

¸

s.t. 0 ď πi ď 1,
n
ÿ

i“1

πi ď k. (2)

It should be noted that any feasible solution to the original discrete optimization problem (1)
is also feasible for the continuously relaxed program in Eq. (2), and hence F pπ˚q ď F ps˚q always
holds. In addition, thanks to the first property in Definition 1, any regular optimality criterion
f leads to a continuous program in Eq. (2) with a convex objective and a convex and compact
feasibility region. In the next section we present a classical entropic mirror descent method that
efficiently solves the continuous convex program in Eq. (2).

2.3 Entropic mirror descent
We first note that Eq. (2) can be re-formulated as

min
ω

rF pωq :“ min
ω
f

˜

n
ÿ

i“1

ωixix
J
i

¸

s.t. 0 ď ωi ď 1{k,
k
ÿ

i“1

ωi “ 1, (3)

by the change of variables ωi “ πi{k and noting that the
řn
i“1 πi ď k constraint in Eq. (2) must

bind, meaning that the optimal solution π˚ must satisfy
řn
i“1 π

˚
i “ k.

The entropic mirror descent (Beck & Teboulle, 2003) is a classical algorithm that takes into
account the geometry of high-dimensional probabilistic simplex to efficiently solve constrained
convex optimization problems. At a high level, entropic mirror descent uses the Kullbeck-Leibler
(KL) divergence

ř

i xi logpxi{yiq as the Bregman divergence, whose proximal operator can be
evaluated in closed form as multiplicative weight updates.

We describe in Algorithm 1 how (projected) entropic mirror descent is applied to solve pro-
gram 3. As our problem has an extra box constraint ωi ď 1{k, we present in Appendix A a simple
algorithm that computes such projection in Opn log nq time and the KL divergence. The projec-
tion algorithm is (in principle similar to but) much simpler than existing algorithms that compute
projections onto simplex or L1 balls (Duchi et al., 2008; Condat, 2015). We also list in Appendix
B gradient calculations of popular optimality criteria f mentioned in Sec. 2.1.

3 Efficient rounding via greedy swapping
In the previous sections we discussed how to efficiently compute fractional solutions π˚ to the
continuously relaxed optimization program in Eq. (2). It remains “round” the fractional solution
π˚ to an integral one ps P t0, 1un. Some intuitive methods such as thresholding or sampling do not
yield good solutions, as discussed in (Wang et al., 2017).

In this section, we present our novel “greedy swapping” technique to round the fractional so-
lution π˚ efficiently with good theoretical approximation guarantees. Our procedure consists of
a pre-processing whitening step, which reduces the problem to a least eigenvalue problem on a
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Algorithm 1 The projected entropic mirror descent algorithm for solving Eq. (3).

Require: function minω rF pωq defined in Eq (3); T number of iterations, step size rules tηtu
1: ωp0q “ p1{n, ¨ ¨ ¨ , 1{nq; Ź initialization
2: for tÐ 0 to T ´ 1 do
3: Compute subgradient gptq P B rF pωptqq; Ź see Appendix B
4: Update: ωpt`1{2q

i 9ω
ptq
i expt´ηtg

ptq
i u, normalized so that

řn
i“1 ω

pt`1{2q
i “ 1;

5: Projection: ωpt`1q Ð BOXSIMPLEXPROJECTpωpt`1{2q, 1{kq; Ź see Appendix A
6: end for
7: return pω :“ 1

T

řT´1
t“0 ω

ptq.

whitened data set, and a greedy swapping algorithm with respect to a carefully designed potential
function φ in Eq. (8) and suitable stopping conditions.

3.1 Pre-processing: whitening and minimum eigenvalue problems
Let π˚ “ pπ˚1 , ¨ ¨ ¨ , π

˚
nq be the optimal fractional solution to the continuously relaxed program (2)

and define W :“
řn
i“1 π

˚
i xix

J
i . The first (pre-processing) step of our algorithm is to whiten the

design points txiuni“1 by taking

Pre-processing : rxi :“ W´1{2xi. (4)

Note that after pre-processing, the transformed data points trxiuni“1 satisfies
řn
i“1 π

˚
i rxirx

J
i “ Ipˆp,

meaning that they are “whitened” to have identity sample covariance, and hence the name.
Our pre-processing step is motivated by the following observation, which shows that for regular

criteria f , a lower bound on the least eigenvalue of
řn
i“1 psirxirx

J
i implies a relative approximation

guarantee on F ppsq.

λmin

`
řn
i“1 psirxirx

J
i

˘

ě τ ùñ p
řn
i“1 psixix

J
i q ľ τp

řn
i“1 π

˚
i xix

J
i q ùñ F ppsq ě τ´1F pπ˚q

(5)

ùñ F ppsq ě τ´1F ps˚q “ τ´1 min
sPt0,1un,}s}1ďk

F psq. (6)

The above observation motivates the following minimum eigenvalue problem:

The minimum eigenvalue problem. Suppose π˚ P r0, 1sn,
řn
i“1 π

˚
i “ k and

řn
i“1 π

˚
i rxirx

J
i “

Ipˆp. Find ps P t0, 1un,
řn
i“1 si ď k such that

λmin

`
řn
i“1 psixix

J
i

˘

ě p1´ 3εq ¨ I. (7)

As a corollary of Eq. (6), putting τ “ 1´ 3ε for arbitrary ε P p0, 1{6s, any ps satisfying Eq. (7)
will also satisfy F ppsq ď p1` 6εqF ps˚q.
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3.2 Potential functions
The main component of our proposed rounding algorithm is a carefully designed potential function
φpu, v;Zq, which measures contributions to the least eigenvalue of a p-dimensional positive semi-
definite matrix Z by swapping design points u and v.

Fix hyper-parameter α ą 0, whose values will be discussed in the next section. For any p-
dimensional positive semi-definite matrix Z define AZ :“ pcIpˆp ` αZq´2 where c P R is the
unique real number such that trpAZq “ 1. The potential function φpu, v;Zq for any pairs of
p-dimensional vectors u, v P Rd are then defined as

φpu, v;Zq “ φ`pu;Zq ´ φ´pv;Zq (8)

where

φ`pu;Zq “
uJAZu

1` 2αuJA
1{2
Z u

and φ´pv;Zq “
vJAZv

1´ 2αvJA
1{2
Z v

. (9)

While the definitions of the potential function φ seems arbitrary, its form has deep roots in
online matrix games. More specifically, the form of the intermediate matrix AZ “ pcI ` αZq´2,
trpAZq “ 1 corresponds to updates rules in a Follow-The-Regularized-Leader (FTRL) (McMahan,
2011) with the matrix `1{2-regularizer ψpAq “ ´2trpA1{2q, first considered by Allen-Zhu et al.
(2015) for a related spectral sparsification problem. The potential function φ then falls naturally
from a regret analysis of FTRL type policies in online matrix games, summarized in the following
lemma:

Lemma 1. For any p-dimensional vectors tut, vtuTt“1 and fixed positive-semidefinite matrix Z0,
define Zt :“ Z0 `

řt
t1“1 ut1u

J
t1 ´ vt1v

J
t1 . If further vJt A

1{2
Zt´1

vt ă 1{2α holds for all t, then

λminpZT q ě
T
ÿ

t“1

φput, vt;Zt´1q ´
2
?
p

α
. (10)

Due to space constraints, we omit the proof of Lemma 1 and the readers are referred to Lemma
2.8 in the full-version of our paper (Allen-Zhu et al., 2017) and its associated proofs.

3.3 Greedy swapping and its approximation ratio
The lower bound of least eigenvalues in Lemma 1 immediately suggests a greedy swapping algo-
rithm, which starts with an arbitrary subset S0 Ď rns of size K and repeatedly find i P S0, j R S0

for “swapping” so as to maximize φprxj, rxi;Zq, where Z “
ř

`PS rx`rx
J
` .

Detailed pseudo-codes of this greedy swapping procedure is given in Algorithm 2. Note that
the pair it P St´1, jt R St´1 that maximizes φprxjt , rxit ;Zt´1q can be found in Opn ` kq instead of
Opnkq time by separately maximizing and minimizing φ`prxjt ;Zt´1q and φ´prxit ;Zt´1q as shown
in Steps 6 and 7 in Algorithm 2, because the potential φ decomposes additively. In step 5 of
Algorithm 2, the unique real number ct P R such that trpAZt´1q “ 1 can be found by a binary
search, because trrpctI ` αZt´1q

´2s is a monotonically decreasing function in ct.
To further understand the validity and effectiveness of Algorithm 2, in light of eigenvalue lower

bound in Lemma 1, the following three questions need to be addressed:
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Algorithm 2 A swapping algorithm for rounding
Require: design points txiuni“1, optimal fractional solution π˚, budget desired accuracy k, ε ą 0.

1: αÐ
?
p{ε; Ź configuration of hyper-parameters

2: Compute rxi “ W´1{2xi where W “
řn
j“1 π

˚
j xjx

J
j ; Ź the whitening step

3: S0 Ď rns an arbitrary subset of size k and tÐ 1; Ź initialization
4: while λminp

ř

iPSt´1
rxirx

J
i q ď 1´ 3ε do

5: Compute AZt´1 “ pctI ` αZt´1q
´2 such that trpAZt´1q “ 1, where Zt´1 “

ř

iPSt´1
rxirx

J
i ;

6: Find it P St´1, rx
J
itA

1{2
Zt´1

rxit ă 1{2α that minimizes φ´prxit ;Zt´1q;
7: Find jt R St´1 that maximizes φ`prxjt ;Zt´1q;
8: Swapping update: St “ St´1 Y tjtuztitu, and tÐ t` 1;
9: end while

10: return ps P t0, 1un where psi “ 1 iff i P ST .

1. Whether one can always find it P St´1 such that rxJitA
1{2
Zt´1

rxit ă 1{2α, making step 6 valid;

2. Whether φprxjt , rxit ;Ztq remains sufficiently large such that the lower bound in Lemma 1 even-
tually approaches 1; and

3. Whether the while loop in Algorithm 2 terminates in a reasonable (polynomial) number of
iterations and produce a good solution ps.

In the following important lemma, we give affirmative answers to all questions above before
the stopping condition in the while loop of Algorithm 2 is met, provided that k is sufficiently large
compared to data dimension p, and the hyper-parameter α is set appropriately.

Lemma 2 (main averaging lemma). For every ε P p0, 1{6s and subset S Ď rns of cardinality k,
suppose α “

?
p{ε, k ě 5p{ε2 and λminpZq ď 1 ´ 3ε, where Z “

ř

iPS rxirx
J
i . Then there exists

i P S such that rxJi A
1{2
Z rxi ă 1{2α. Furthermore,

max
jRS

min
iPS,rxJi A

1{2
Z rxiă1{2α

φprxj, rxi;Sq ě
ε

k
. (11)

At a higher level, Lemma 2 shows that before the stopping condition λminpZq ě 1 ´ 3ε is
met, the greedy swapping procedure is always well-defined and a steady ε{k rise in the potential
function (corresponding to the lower bound of λminpZq in Lemma 1) after each swap. Additionally,
as a direct corollary of Lemmas 1 and 2, the while loop in Algorithm 2 terminates within Opk{εq
iterations, after which the stopping condition λminpZq ě 1´ 3ε will be met.

Lemma 2 corresponds to Lemma 2.8 in the full version of our paper (Allen-Zhu et al., 2017),
which is proved by careful case analysis and used the particular forms and properties of potential
φ. Due to space constraints we will not give the proof of Lemma 2 in this paper, and interested
readers should refer to Sec. 2.5 in (Allen-Zhu et al., 2017) for a complete proof.

The following theorem, combining our previous analysis, gives an explicit approximation ratio
of our algorithm when k is not too small compared to p.
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Theorem 1. Suppose k ě 5p{ε2 for some ε P p0, 1{6s. Then for any regular f , ps P t0, 1un output
by Algorithm 2 has size

řn
i“1 psi ď k and satisfies

F ppsq ď p1` 6εqF ps˚q “ p1` 6εq max
sPt0,1un,}s}1ďk

F psq.

Theorem 1 shows that, under the condition of k “ Ωpp{ε2q, our computationally efficient al-
gorithm achieves p1 ` εq-relative approximation for any regular optimality criteria f . We remark
that the k “ Ωppq dependency is absolutely necessary, as k ě p is needed in order for the sample
covariance

ř

iPS xix
J
i to be invertible and therefore positive definite. In addition, the k “ Ωp1{ε2q

dependency is also unavoidable for continuous relaxation based methods and general objectives f ,
as shown by Nikolov et al. (2018). For specific objectives such as the A- or D-optimality, it is pos-
sible to obtain improved condition between k and p using volume sampling based methods (Singh
& Xie, 2017; Nikolov et al., 2018). It is an interesting open question whether our algorithmic
framework can also be adapted to give improved results for special optimality criteria f .

4 Simulation results
We provide simulation results on synthetic data and compare the performance of our algorithm
with several popular competitors.

4.1 Methods and Our Implementation
The choice α “

?
p{ε and the stopping rule in Algorithm 2 are backed by our theoretical proofs,

and may be too pessimistic for practical usage. Therefore, we make the following slight changes.
For the choice of α, we consider a grid of values α “ ν

?
p for ν “ 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4,

1.6, 1.8, 2.0, 2.5, 3.0, 4.0, 5.0, and select the output ps that leads to the largest λminp
ř

i psixix
J
i q.

For the stopping rule, we stop the algorithm whenever no i P St´1 satisfies 2αxA
1{2
t , xix

J
i y ă 1,

or a consecutive of p iterations fail to improve the minimum eigenvalue of the current solution
with non-singular Z.Finally, a safeguard is added to record the history of all solutions ps appeared
throughout the iterations. The algorithm also terminates once the same solution is visited twice.

To find the relaxed continuous solution π, we use the projected entropic mirror descent Algorithm 1.
We use backtracking line search3 for differentiable objectives (e.g., fApΣq “ trpΣ´1q{p and
gDpΣq “ ´1{p ¨ log det Σ) and step length ηt “ γ0{

?
t` 1 for non-differentiable objectives (e.g.,

fEpΣq “ }Σ´1}op), where γ0 is chosen so that the algorithm does not overshoot too much. In
practice, we start with γ0 “ 0 and half it (i.e., γ0 Ð γ0{2) whenever fpωpt`1qq ě 2fpωptqq. We
stop the algorithm after 100 iterations for differentiable objectives, and after 1000 iterations for
non-differentiable objectives.

We compare our proposed algorithm with several previous works listed below.

3In backtracking line search, for every iteration t a preliminary step size of ηt “ 1 is used and the step size is
repeatedly halved until the Armijo-Goldstein condition fpωpt`1qq ď fpωptqq ` 0.5xgptq, ωpt`1q ´ ωptqy is satisfied,
where ωpt`1q is the (projected) next step under step size ηt.
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– Uniform sampling (UNIFORM): sample k coordinates from rns uniformly at random without
replacement. The sampling is repeated for 10 times and the best objective in the 10 samples is
reported.

– Weighted sampling (WEIGHTED): sample k coordinates from rns without replacement accord-
ing to the distribution π˚{k, where π˚ is the optimal (continuous) solution to Eq. (2). The
sampling is repeated for 10 times and the best objective in the 10 samples is reported.

– Fedorov’s exchange (FEDOROV): the Fedorov’s exchange algorithm (Fedorov, 1972; Miller &
Nguyen, 1994) is a popular heuristic widely used in statistical computing of optimal designs.
The algorithm starts with a random subset of k points and at each iteration selects a pair of points
for exchange such that the objective f is minimized over all such changes. In our experiments
we limit the maximum number of changes to 1000, or terminate the algorithm whenever no
such exchanges improve the objective.

– Greedy removal (GREEDY): the greedy removal procedure starts with the full set S “ rns
and removes one coordinate at a time so that the objective is minimized over all such single
removals; the algorithm is accurate in most practical applications at the cost of quadratic running
time in terms of n, making it less practical for large design pools.

Note that, the greedy method has a provably guarantee for fA and fE criteria, but with a large
n´p`1
k´p`1

factor approximation rate (Avron & Boutsidis, 2013). Its theoretical guarantees for other
optimality criteria are unknown.

In the above list, we limit our attention to general-purpose algorithms that can (at least in practice)
handle arbitrary optimality criteria, and skip methods that are designed specifically for certain
objectives (e.g., submodular optimization for fD and dual volume sampling (Avron & Boutsidis,
2013; Li et al., 2017) for fA and fD). We also only consider algorithms that can handle “frequen-
tist” objectives which are infinity when Σ “

ř

i psixix
J
i is singular, thus excluding algorithms like

(Chamon & Ribeiro, 2017; Bian et al., 2017) that require the objective f to be well-defined and
finite-valued for all positive semi-definite matrices.

4.2 Data and Objectives
We synthesize a nˆ p design pool X as follows:

X “

„

XA 0pn{2qˆpp{2q
0pn{2qˆpp{2q XB



,

where XA is an pn{2qˆpp{2q random Gaussian matrix, re-scaled so that the eigenvalues of XJ
AXA

satisfy a quadratic decay: σjpXJ
AXAq9j

´2; XB is an pn{2q ˆ pp{2q random Gaussian matrix, re-
scaled so that the eigenvalues of XJ

BXB satisfy a linear decay: σjpXJ
BXBq9j

´1. Such synthetic
setting is carefully selected: the decay of the eigenvalues in the Gaussian designs mean that there
are important design points xi, and hence uniform sampling may not work well; on the other
hand, the split of the two “signal” matrices XA and XB demands a careful balance between points
allocated in A and B, because algorithms that focus solely on one set would produce close to
singular designs and thus suffer high objective loss.
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Table 1: Results on synthetic data with n “ 5000 and p “ 50. Numbers in brackets indicate
the running time (in seconds) for each algorithm (omitted for UNIFORM, which does not take
significant running time). Our proposed algorithm (Alg. 2) appears as SWAPPING. The running
time for both WEIGHTED and SWAPPING takes into account the time for continuous optimization.

fA fD fE fV fG
k “ 1.2p “ 60
UNIFORM 32.1 3.89 40.0 53.2 300
WEIGHTED 1.83 (3.3) 1.04 (2.6) 13.5 (29) 4.13 (13) 203 (80)
FEDOROV 9.68 (0.0) 6.86 (0.0) Inf (0.0) 94.4 (0.0) 26.1 (1.4ˆ103)
GREEDY 1.27 (9.5) 0.88 (9.6) 4.46 (0.6ˆ103) 3.24 (10) 17.9 (5.5ˆ103)
SWAPPING 1.31 (3.5) 0.87 (2.8) 3.41 (29) 3.11 (13) 19.6 (80)
k “ 1.5p “ 75
UNIFORM 8.05 3.91 109 17.9 155
WEIGHTED 1.29 (3.5) 0.96 (2.9) 6.93 (30) 3.48 (19) 51.0 (77)
FEDOROV 25.1 (0.0) Inf (0.0) 41.7 (1.0ˆ103) 3.2 (0.0) 25.0 (0.6ˆ103)
GREEDY 1.20 (9.7) 0.87 (9.8) 4.15 (0.6ˆ103) 2.97 (10) 16.8 (5.4ˆ103)
SWAPPING 1.30 (3.8) 0.93 (3.1) 2.39 (30) 3.07 (19) 15.1 (78)
k “ 2p “ 100
UNIFORM 6.34 4.17 18.0 15.4 127
WEIGHTED 1.20 (3.5) 0.89 (2.6) 4.80 (28) 2.96 (17) 28.5 (82)
FEDOROV 1.33 (1.9) 0.92 (2.6) 16.7 (1.5ˆ103) 3.06 (2.4) 17.1 (1.4ˆ103)
GREEDY 1.16 (9.3) 0.86 (9.6) 3.32 (0.6ˆ103) 2.85 (10) 13.0 (5.4ˆ103)
SWAPPING 1.22 (3.8) 0.86 (3.0) 2.10 (28) 2.91 (17) 12.9 (83)
k “ 3p “ 150
UNIFORM 5.03 3.41 22.3 12.9 105
WEIGHTED 1.22 (3.0) 0.90 (2.9) 4.12 (30) 2.99 (8.1) 18.1 (82)
FEDOROV 1.20 (6.2) 0.97 (7.0) 12.9 (5.0ˆ103) 3.25 (4.8) 18.7 (2.1ˆ103)
GREEDY 1.15 (9.4) 0.88 (9.6) 3.08 (0.6ˆ103) 2.87 (10) 12.4 (5.2ˆ103)
SWAPPING 1.18 (3.6) 0.89 (3.5) 1.92 (30) 2.87 (8.6) 11.9 (82)
k “ 5p “ 250
UNIFORM 4.76 3.30 11.6 10.9 67.7
WEIGHTED 1.24 (3.4) 0.93 (3.1) 3.43 (33) 2.99 (6.5) 20.0 (82)
FEDOROV 5.99 (0.0) 3.11 (0.0) 11.5 (5.6ˆ103) 3.52 (8.8) 18.6 (5.6ˆ103)
GREEDY 1.21 (9.7) 0.92 (9.9) 2.93 (0.6ˆ103) 2.97 (10.5) 12.6 (5.5ˆ103)
SWAPPING 1.27 (4.5) 0.92 (4.2) 1.96 (34) 2.98 (7.4) 12.1 (83)
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Five objectives are selected: the A-optimality fApΣq “ trpΣ´1q{p, the D-optimality fDpΣq “
det Σ´1{p, the E-optimality fEpΣq “ }Σ´1}op, the V-optimality fV pΣq “ trpXΣ´1XJq{n and the
G-optimality fGpΣq “ max diagpXΣ´1XJq.

4.3 Results
In Table 1 we report performance of our continuous relaxation and the swapping algorithm, to-
gether with other competitors mentioned in Section 4.1. We also report the running time (in brack-
ets) of each algorithm, except for the uniform sampling algorithm which finishes instantly on all
data sets. Due to space constraints we only include the result for n “ 5000 and p “ 50, while
additional simulation results can be found in the full version of our paper (Allen-Zhu et al., 2017).

The simulation results suggest that our algorithm (SWAPPING) consistently outperforms uni-
form sampling (UNIFORM), weighted sampling (WEIGHTED) and Fedorov’s exchange algorithm
(FEDOROV) for all experimental settings and objectives, especially in cases where k is close to p.
Recall these are the cases when UNIFORM and WEIGHTED perform very badly due to statistical
fluctuation of the sampling procedures.

Our swapping algorithm performs comparable or slightly worse than GREEDY. However, our
algorithm is computationally efficient and can handle a wide range of objectives and input sizes. In
contrast, the time complexity of the greedy algorithm scales quadratically or even cubically (e.g.,
the G-optimality) with the number of input points n and soon becomes intractable for intermediate-
sized inputs (e.g., n ą 104).

5 Application to lightweight structure design
We consider an application of our method to a 3D lightweight structure design problem. Most
results in this section appeared in (Wang et al., 2018) with more details.

5.1 Background
3D lightweight structure design is the question of carefully distributing material mass in compli-
cated 3D structures so that the resulting object has sufficient strength to withstand everyday use.
An important task is then to quantify the structural performance of an object under the external
forces it may experience during its use. Figure 1 from (Ulu et al., 2017) gives an intuitive illustra-
tion of the performance of structures under external forces applied at different locations, measured
by stress distributed on the rest of the structure among which the maximum stress defines the per-
formance of structures under given external forces.

Suppose external forces can be applied on n possible locations for a specific structure. For each
location i P rns, the stress distribution as well as the maximum stress suffered by an unit amount of
external force can be computed by an accurate yet time consuming finite element analysis (FEA)
method. As each external force location i P rns requires an independent FEA run, it is very
desirable to select a few “representative” locations S Ď rns, |S| ď k ! n and estimate the
maximum stress outcomes of the other force locations not selected in S.

This “location selection” problem fits well within the experimental design framework consid-
ered in this paper, and in the next two paragraphs we explain how to apply our developed algorithm
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Figure 1: Stress distributions on designed structures under external forces.

as well as its experimental performances.

5.2 Method
Let G be a graph with n vertices, representing the spatial affinity of the n possible force locations
on a structure surface. The readers are referred to (Ulu et al., 2017; Wang et al., 2018) for details
of the construction of G. Let L be the graph Laplacian matrix of G, and X P Rnˆp be the top-p
eigenvectors of the graph Laplacian L. A linear regression model is used to model the maximum
stress yi induced by an unit external force applied at location i P rns (corresponding to xi P Rd in
the top eigenvectors matrix X), as

yi “ xJi β0 ` ξi, (12)

where β0 is a p-dimensional unknown regression model and tξiuni“1 are noise variables.
To select a subset S Ď rns, |S| ď k of locations, we use the algorithm proposed in the previous

sections to solve the discrete optimization problem in Eq. (2), restated below:

mins f
`
řn
i“1 sixix

J
i

˘

s.t. si P t0, 1u,
řn
i“1 si ď k.

The selected subset S is then chosen as all locations with si “ 1, and FEA analysis on these
force locations is carried out to obtain their corresponding induced maximum stress yi. The re-
gression model β0 is then estimated by ordinary least squares pβ “ p

ř

iPS xix
J
i q
´1p

ř

iPS yixiq, and
predictions on the other external force locations are produced by pyi “ xJi

pβ for i R S. The force
locations i P rns are then ranked in descending order according to tpyiuni“1, and FEA analysis is
computed again on the top ranked force locations to determine the final location i˚ P rns that yields
the largest stress response yi˚ . More details of our algorithmic pipeline is given in (Wang et al.,
2018).

5.3 Experimental settings
We evaluate the performance of our algorithm on three test structures (FERTILITY, ROCKINGCHAIR

and SHARK) illustrated in Fig. 2. Descriptions and some basic statistics of the considered struc-
tures are given in (Wang et al., 2018).

In our experiments, we consider 5 methods to sample the force locations subset S Ď rns,
|S| ď k. We compare our proposed algorithm (abbreviated as GREEDY) with baseline meth-
ods UNIFORM and LEVSCORE, as well as the previous work K-MEANS (Ulu et al., 2017) and
SAMPLING (Wang et al., 2017) :
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Figure 2: Example test structures with complex geometries. Fixed boundary conditions and contact
regions are indicated in blue and red, respectively.

1. UNIFORM: The subset S Ď rns is obtained by sampling without replacement each force loca-
tion i P rns uniformly at random, until k samples are obtained;

2. LEVSCORE: The subset S Ď rns is obtained by sampling without replacement each force
location i P rns with probability proportional to its leverage score, defined as xJi pX

JXq´1xi,
until k samples are obtained;

3. K-MEANS: The subset S Ď rns consists of k force locations such that the geodesic distance
between the closest force locations in S is maximized. As the problem itself is NP-hard, the
K-means (Lloyd’s) algorithm is employed to get an approximate solution.

4. SAMPLING: The subset S Ď rns is obtained by sampling without replacement each force
location i P rns with probability π˚i until k samples are obtained, where π˚ “ pπ˚1 , ¨ ¨ ¨ , π

˚
nq

is the optimal fractional solution of the continuously relaxed program (2).

The performance of an algorithm is evaluated by the smallest integer m required so that the
top-m ranked lists according to tpyiuni“1 include the external force location i˚ P rns that actually
leads to the maximum stress a structure suffers.

5.4 Results and discussion
Table 2 reports the performance (m needed to cover i˚ P rns leading to maximum stress) of our
algorithm and its competitors under variance k settings for all three different structures. It suggests
that both the K-MEANS and the GREEDY algorithms outperform their competitors for most param-
eter settings. One important reason for the overall good performance of K-MEANS and GREEDY

is their deterministic nature, which avoids poor designs due to statistical perturbations in the other
randomized algorithms. Furthermore, the GREEDY algorithm remains accurate and robust even
when k is very small (e.g., k “ 25). For such a small k setting, the other methods require large
m values to compensate for the prediction error. Therefore, the GREEDY algorithm can produce
an accurate prediction of the overall maximum stress using much fewer number of total FEAs in
both the first and the last stages of our algorithm pipeline, as shown by the rightmost columns in
the tables. Our approach uses no more than 65 FEAs to successfully recover the maximum stress
caused by worst-case external forces. In addition, when a 5% to 10% error tolerance is used, the
number of FEAs can be further reduced to less than 40. This is close to a 100ˆ speed-up compared
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Table 2: Results for the three test structures. Numbers in each cell are the smallest m such that
the top ranked m force locations include the actual location i˚ P rns leading to maximal stress.
Randomized algorithms (UNIFORM, LEVSCORE and SAMPLING) are run for 10 independent trials
and the median performance is reported. Best performing settings are indicated in bold. Additional
results available in (Wang et al., 2018).

k “ 25 50 100 150 200 250 300 Total FEAs pk `mq
Fertility UNIFORM 316.5 149 78.5 37.5 98.5 42.5 39 178.5 (k “ 100)

LEVSCORE 252.5 54.5 73.5 68.5 42.5 31 13.5 104.5 (k “ 50)
K-MEANS 237 25 61 82 57 17 16 75 (k “ 50)
SAMPLING 210.5 148.5 51 30 35.5 34 26.5 151 (k “ 100)
GREEDY 12 26 13 7 11 25 33 37 (k “ 25)

RockingChair UNIFORM 716 857 385.5 42 135.5 269.5 36 192 (nFL “ 150)
LEVSCORE 764.5 208.5 36 36 36 36 36 136 (k “ 100)
K-MEANS 4013 4400 4573 4301 4320 4620 4757 4038 (k “ 25)
SAMPLING 672.5 282 38.5 38 38 36 36 138.5 (k “ 100)
GREEDY 36 35 208 35 36 36 36 61 (k “ 25)

Shark UNIFORM 585 384 141.5 208.5 20 9 9.5 220 (nFL “ 200)
LEVSCORE 478.5 9 9 9 9 9 9 59 (nFL “ 50)
K-MEANS 133 102 9 9 9 9 9 109 (nFL “ 100)
SAMPLING 963.5 87 9 9 9 9 9 109 (nFL “ 100)
GREEDY 9 171 9 9 9 9 9 34 (nFL “ 25)

to the brute-force approach that performs FEA on the entire surface mesh. It also achieves a 5ˆ
speed-up over the existing work Ulu et al. (2017) and is simpler to implement.

In Fig. 3, we plot the sub-sampled force locations (i.e., S) of our proposed algorithm for k “
200 point. We provide the samples obtained by the K-MEANS algorithm in Ulu et al. (2017) for
comparison. The difference in the sampling patterns between GREEDY and K-MEANS are quite
obvious from the figures. We explain the differences for the three structures separately:

• Fertility: The K-MEANS algorithm emphasizes the pairwise geodesic distance between sample
points and thus places samples in a uniform fashion on the bodies, necks and heads of the struc-
ture. On the other hand, the GREEDY algorithm places more samples on the arms connecting
the mother and the child, which are the most fragile parts of the structure. By placing more
samples on these parts the learned linear model is more accurate in predicting the maximum
stress, and therefore fewer FEAs are required.

• RockingChair: The GREEDY algorithm produces more samples on the top end of the body,
the surface area of the smaller back support and the edges of the larger seat compared to the
equally distanced K-MEANS design. External forces applied onto these parts of this structure
are likely to cause increased stress, and therefore more samples placed around this region can
greatly improve the regression model built for the maximum stress.

• Shark: As reported in Table 2, most of the sampling methods can predict the maximum stress
using very small number of FEAs. However, if we focus on the sample points on the fins of
the shark there are some noticeable differences between K-MEANS and GREEDY. While the
GREEDY algorithm places more points around the tips, samples produced by the K-MEANS

algorithm are relatively uniformly distributed on the surfaces. This subtle difference makes
GREEDY algorithm more robust in prediction accuracy for small nFL values.
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Figure 3: Sampled force locations (S) using the K-MEANS algorithm (top row) versus our proposed
algorithm (bottom row), for k “ 200. Results for smaller k values available in (Wang et al., 2018).

Despite the significant reduction in FEA time, one important limitation of the proposed algo-
rithm is the lack of stopping criteria. In particular, the performance parameter k can only be eval-
uated once the ground-truth maximum stress is known. On the other hand, performance control in
problems involving structural mechanics is of vital importance because designs with insufficient
stress tolerance may actually fail in reality, leading to devastating consequences. In our examples,
we empirically determined that k “ 40 is sufficient for most of the k settings.

6 Extensions
We mention several extensions of our algorithmic framework and its analysis. A complete de-
scription of these extensions is available in the long versions of our papers (Wang et al., 2017;
Allen-Zhu et al., 2017).

6.1 Generalized linear models
In a generalized linear model µpxq “ ErY |xs satisfies gpµpxqq “ η “ xJβ0 for some known link
function g : R Ñ R. Under regularity conditions (Van der Vaart, 2000), the maximum-likelihood
estimator pβn P argmaxβt

řn
i“1 log ppyi|xi; βqu satisfies E}pβn ´ β0}

2
2 “ p1 ` op1qqtrpIpX, β0q

´1q,
where IpX, β0q is the Fisher’s information matrix:

IpX, β0q “ ´

n
ÿ

i“1

E
B2 log ppyi|xi; β0q

BβBβJ
“ ´

n
ÿ

i“1

ˆ

E
B2 log ppyi; ηiq

Bη2
i

˙

xix
J
i . (13)

Here both expectations are taken over y conditioned on X and the last equality is due to the
sufficiency of ηi “ xJi β0. The experiment selection problem is then formulated to select a subset
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S Ď rns of size k, either with or without duplicates, that minimizes trpIpXS, β0q
´1q.

It is clear that the objective in Eq. (13) depends on the unknown parameter β0, which itself
is to be estimated. This issue is known as the design dependence problem for generalized linear
models (Khuri et al., 2006). One approach is to consider locally optimal designs (Khuri et al.,
2006; Chernoff, 1953), where a consistent estimate qβ of β0 is first obtained on an initial design
subset and then qηi “ xJi

qβ is supplied to compute a more refined design subset to get the final
estimate pβ. With the initial estimate qβ available, one may apply transform xi ÞÑ rxi defined as

rxi “
a

´EB2{Bη2 log ppyi; qηiq ¨ xi.

6.2 Bayesian designs
In some applications of experimental design, a prior is imposed on the regression model (Chaloner
& Verdinelli, 1995). In cases where a Gaussian prior N p0, λq is imposed and the homogeneous
noise ξi is sub-Gaussian with parameter σ2, the Bayesian experimental design problem can be
formulated with objective fλ,σpΣq “ fpλ{σ2 ¨ Ipˆp `Σq. Here, fp¨q is any optimality criterion we
have introduced in the classical experimental design setting.

Such objectives fλ,σ are also known as Bayesian alphabetical optimality (Chaloner & Verdinelli,
1995) and are useful when the design budget k is close to the number of parameters p, or when clas-
sical experiment design yields ill-conditioned solutions. Our methods remain valid for Bayesian
design problems, with the “reciprocal multiplicity” condition in Definition 1 replaced by a weaker
“reciprocal sub-multiplicity” condition fptAq ď t´1fpAq for 0 ă t ă 1.

7 Conclusion
In this paper we introduced a computationally efficient algorithmic framework for the question
of discrete optimization in experimental design problems. Our algorithm, based on a continuous
relaxation and a greedy swapping rounding technique, enjoys rigorous approximation guarantees
that are near-optimal. Numerical results on synthetic and real-world structure design problems
confirm the effectiveness of our proposed method.
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Appendix A Projection operators

We give detailed procedures in Algorithm 3 for computing the projection step (onto the probabilis-
tic simplex with box constraints) in step 5 of Algorithm 1. The box constraint parameter b is taken
to be 1{k in our applications. The algorithm has time complexity Opn log nq.
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Algorithm 3 Projection onto the probabilistic simplex with box constraint
Require: ω P ∆n, parameter b P r1{n, 1s. Ź ∆n “ tx P Rn : xi ě 0,

ř

i xi “ 1u
Ensure: an output ω1 P ∆n such that }ω1}8 ď b. Ź ω1 “ arg minyP∆n,yiďb KLpy}ωq

Ź where KLpy}ωq :“
ř

i yi log yi
ωi

1: Sort ω in descending order: ω1 ě ω2 ě ¨ ¨ ¨ ě ωn ą 0;
2: if ω1 ď b then return ω;
3: KL1 Ð b logpb{ω1q, Z1 Ð 1´ ω1, KLopt Ð 8, ηopt Ð 0, and Copt Ð 0;
4: for q Ð 2 to n do
5: C Ð p1´ bpq ´ 1qq{Zq´1;
6: if C ą 0 and Cwq ď b and

`

KLq´1 ` C logpCq ¨ Zq´1 ď KLopt

˘

then
7: KLopt Ð KLq´1 ` C logpCq ¨ Zq´1, ηopt Ð ωq, Copt Ð C;
8: end if
9: KLq Ð b logpb{ωqq, Zq Ð Zq´1 ´ ωq;

10: end for
11: Set ω1i Ð b if ωi ě ηopt, and ω1i Ð Coptωi if ωi ă ηopt;
12: return ω1.

The correctness of Algorithm 3 is proved in Sec. A.4 in the full-version of this paper (Allen-Zhu
et al., 2017). Due to space constraints we omit its proof in this paper.

Appendix B Gradient calculations

We give detailed gradient/sub-gradient calculations for the popular optimality criteria listed in
Sec. 2.1. Recall that Σ “

řn
i“1 πixix

J
i . We also use Q “ tπ : 0 ď πi ď 1,

řn
i“1 πi ď

k,
řn
i“1 πixix

J
i P S`p u for the feasible set of π, for which Σ is in the domain of f .

- A-optimality fApΣq “ 1
p
trpΣ´1q is differentiable on Q, and BfA

Bπi
“ ´1

p
xJi Σ´2xi.

- D-optimality gDpΣq “ ´1
p

log detpΣq is differentiable on Q, and BgD
Bπi

“ ´1
p
xJi Σ´1xi.

- T-optimality fT pΣq “ p{trpΣq is differentiable on Q, and BfT
Bπi
“ ´1

p

xJi xi
trpΣq

.

- E-optimality fEpΣq “ }Σ´1}2 is not differentiable everywhere on Q. Let σmin be the least
eigenvalue of Σ and u P Rp, }u}2 “ 1 be any unit vector such that Σu “ σminu. Define
di :“ ´|uJxi|

2{σ2
min and d “ rd1, ¨ ¨ ¨ , dns. Then d P BfEpπq, where BfEpπq is the set of

subgradients of fE at π.

- V-optimality fV pΣq “ 1
n
trpXΣ´1XJq is differentiable onQ, and BfV

Bπi
“ ´ 1

n
xJi Σ´1XJXΣ´1xi.

- G-optimality fGpΣq “ max diagpXΣ´1XJq is not differentiable everywhere on Q. Let j “
argmax1ďiďne

J
i XΣ´1XJei and define di :“ ´pxJi Σ´1ejq

2. Then d “ rd1, ¨ ¨ ¨ , dns P BfGpπq,
where BfGpπq is the set of subgradients of fG at π.
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